Homogenization in a thin domain with an oscillatory boundary


Autoria(s): ARRIETA, Jose M.; PEREIRA, Marcone C.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

18/10/2012

18/10/2012

2011

Resumo

In this paper we analyze the behavior of the Laplace operator with Neumann boundary conditions in a thin domain of the type R(epsilon) = {(x(1), x(2)) is an element of R(2) vertical bar x(1) is an element of (0, 1), 0 < x(2) < epsilon G(x(1), x(1)/epsilon)} where the function G(x, y) is periodic in y of period L. Observe that the upper boundary of the thin domain presents a highly oscillatory behavior and, moreover, the height of the thin domain, the amplitude and period of the oscillations are all of the same order, given by the small parameter epsilon. (C) 2011 Elsevier Masson SAS. All rights reserved.

MICINN, Spain[MTM2009-07540 DGES]

MICINN, Spain[MTM2006-08262 DGES]

MICINN, Spain[PHB2006-003 PC]

MICINN, Spain[PR2009-0027]

""Comportamiento Asintotico y Dinamica de Ecuaciones Diferenciales-CADEDIF"" (BSCH-UCM, Spain)[GR58/08]

""Comportamiento Asintotico y Dinamica de Ecuaciones Diferenciales-CADEDIF"" (BSCH-UCM, Spain)[Grupo 920894]

FAPESP[2008/53094-4]

CAPES[DGU 127/07]

CNPq, Brazil[305210/2008-4]

Identificador

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, v.96, n.1, p.29-57, 2011

0021-7824

http://producao.usp.br/handle/BDPI/17127

10.1016/j.matpur.2011.02.003

http://dx.doi.org/10.1016/j.matpur.2011.02.003

Idioma(s)

eng

Publicador

GAUTHIER-VILLARS/EDITIONS ELSEVIER

Relação

Journal de Mathematiques Pures Et Appliquees

Direitos

restrictedAccess

Copyright GAUTHIER-VILLARS/EDITIONS ELSEVIER

Palavras-Chave #Thin domain #Oscillatory boundary #Homogenization #EQUATION #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion