979 resultados para L-stable Functions
Resumo:
Иван Гинчев - Класът на ℓ-устойчивите в точка функции, дефиниран в [2] и разширяващ класа на C1,1 функциите, се обобщава от скаларни за векторни функции. Доказани са някои свойства на ℓ-устойчивите векторни функции. Показано е, че векторни оптимизационни задачи с ограничения допускат условия от втори ред изразени чрез посочни производни, което обобщава резултати от [2] и [5].
Resumo:
McCausland (2004a) describes a new theory of random consumer demand. Theoretically consistent random demand can be represented by a \"regular\" \"L-utility\" function on the consumption set X. The present paper is about Bayesian inference for regular L-utility functions. We express prior and posterior uncertainty in terms of distributions over the indefinite-dimensional parameter set of a flexible functional form. We propose a class of proper priors on the parameter set. The priors are flexible, in the sense that they put positive probability in the neighborhood of any L-utility function that is regular on a large subset bar(X) of X; and regular, in the sense that they assign zero probability to the set of L-utility functions that are irregular on bar(X). We propose methods of Bayesian inference for an environment with indivisible goods, leaving the more difficult case of indefinitely divisible goods for another paper. We analyse individual choice data from a consumer experiment described in Harbaugh et al. (2001).
Resumo:
L'insuffisance cardiaque est une maladie à grande incidence dont le traitement définitif est difficile. Les pompes d'assistance ventriculaire ont été proposées comme thérapie alternative à long terme, mais la technologie est relativement jeune et selon son design, axial ou centrifuge, le dispositif favorise soit l'hémolyse, soit la stagnation de l'écoulement sanguin. Les pompes à écoulement mixte, combinant certaines propriétés des deux types, ont été proposées comme solution intermédiaire. Pour évaluer leurs performances, nous avons effectué des comparaisons numériques entre huit pompes, deux axiales, deux centrifuges, et quatre mixtes, en employant un modèle Windkessel du système cardiovasculaire avec paramètres optimisés pour l'insuffisance cardiaque résolu avec une méthode Radau IIA3, une méthode de résolution de système d'équations différentielles ordinaires L-stable appartenant à la famille des méthodes Runge-Kutta implicites. Nos résultats semblent suggérer que les pompes d'assistance mixtes ne démontrent qu'un léger avantage comparativement aux autres types en terme de performance optimale dans le cas de l'insuffisance cardiaque, mais il faudrait effectuer plus d'essais numériques avec un modèle plus complet, entre autres avec contrôles nerveux implémentés.
Resumo:
We propose a new implementation of target mass corrections to nucleon structure functions which, unlike existing treatments, has the correct kinematic threshold behavior at finite Q(2) in the x -> 1 limit. We illustrate the differences between the new approach and existing prescriptions by considering specific examples for the F-2 and F-L structure functions, and discuss the broader implications of our results, which call into question the notion of universal parton distribution at finite Q(2).
Resumo:
In this paper we consider nonautonomous optimal control problems of infinite horizon type, whose control actions are given by L-1-functions. We verify that the value function is locally Lipschitz. The equivalence between dynamic programming inequalities and Hamilton-Jacobi-Bellman (HJB) inequalities for proximal sub (super) gradients is proven. Using this result we show that the value function is a Dini solution of the HJB equation. We obtain a verification result for the class of Dini sub-solutions of the HJB equation and also prove a minimax property of the value function with respect to the sets of Dini semi-solutions of the HJB equation. We introduce the concept of viscosity solutions of the HJB equation in infinite horizon and prove the equivalence between this and the concept of Dini solutions. In the Appendix we provide an existence theorem. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.
Resumo:
In this Thesis we consider a class of second order partial differential operators with non-negative characteristic form and with smooth coefficients. Main assumptions on the relevant operators are hypoellipticity and existence of a well-behaved global fundamental solution. We first make a deep analysis of the L-Green function for arbitrary open sets and of its applications to the Representation Theorems of Riesz-type for L-subharmonic and L-superharmonic functions. Then, we prove an Inverse Mean value Theorem characterizing the superlevel sets of the fundamental solution by means of L-harmonic functions. Furthermore, we establish a Lebesgue-type result showing the role of the mean-integal operator in solving the homogeneus Dirichlet problem related to L in the Perron-Wiener sense. Finally, we compare Perron-Wiener and weak variational solutions of the homogeneous Dirichlet problem, under specific hypothesis on the boundary datum.
Resumo:
We test for departures from normal and independent and identically distributed (NIID) log returns, for log returns under the alternative hypothesis that are self-affine and either long-range dependent, or drawn randomly from an L-stable distribution with infinite higher-order moments. The finite sample performance of estimators of the two forms of self-affinity is explored in a simulation study. In contrast to rescaled range analysis and other conventional estimation methods, the variant of fluctuation analysis that considers finite sample moments only is able to identify both forms of self-affinity. When log returns are self-affine and long-range dependent under the alternative hypothesis, however, rescaled range analysis has higher power than fluctuation analysis. The techniques are illustrated by means of an analysis of the daily log returns for the indices of 11 stock markets of developed countries. Several of the smaller stock markets by capitalization exhibit evidence of long-range dependence in log returns. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Mathematics Subject Classification 2010: 42C40, 44A12.
Resumo:
The evaluation of relativistic spin networks plays a fundamental role in the Barrett-Crane state sum model of Lorentzian quantum gravity in 4 dimensions. A relativistic spin network is a graph labelled by unitary irreducible representations of the Lorentz group appearing in the direct integral decomposition of the space of L^2 functions on three-dimensional hyperbolic space. To `evaluate' such a spin network we must do an integral; if this integral converges we say the spin network is `integrable'. Here we show that a large class of relativistic spin networks are integrable, including any whose underlying graph is the 4-simplex (the complete graph on 5 vertices). This proves a conjecture of Barrett and Crane, whose validity is required for the convergence of their state sum model.
Systems of coupled clamped beams equations with full nonlinear terms: Existence and location results
Resumo:
This work gives sufficient conditions for the solvability of the fourth order coupled system┊
u⁽⁴⁾(t)=f(t,u(t),u′(t),u′′(t),u′′′(t),v(t),v′(t),v′′(t),v′′′(t))
v⁽⁴⁾(t)=h(t,u(t),u′(t),u′′(t),u′′′(t),v(t),v′(t),v′′(t),v′′′(t))
with f,h: [0,1]×ℝ⁸→ℝ some L¹- Carathéodory functions, and the boundary conditions
{
Resumo:
We prove that any subanalytic locally Lipschitz function has the Sard property. Such functions are typically nonsmooth and their lack of regularity necessitates the choice of some generalized notion of gradient and of critical point. In our framework these notions are defined in terms of the Clarke and of the convex-stable subdifferentials. The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawlucki's extension of the Puiseuxlemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.
Resumo:
We prove that the Cuntz semigroup is recovered functorially from the Elliott invariant for a large class of C¤-algebras. In particular, our results apply to the largest class of simple C¤-algebras for which K-theoretic classification can be hoped for. This work has three significant consequences. First, it provides new conceptual insight into Elliott's classification program, proving that the usual form of the Elliott conjecture is equivalent, among Z-stable algebras, to a conjecture which is in general substantially weaker and for which there are no known counterexamples. Second and third, it resolves, for the class of algebras above, two conjectures of Blackadar and Handelman concerning the basic structure of dimension functions on C¤-algebras. We also prove in passing that the Kuntz-Pedersen semigroup is recovered functorially from the Elliott invariant for all simple unital C¤-algebras of interest.
Resumo:
In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.