Clarke critical values of subanalytic Lipschitz continuous functions


Autoria(s): Bolte, Jerôme; Daniilidis, Aris; Lewis, Adrian S.; Shiota, Masashiro
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/06/2005

Resumo

We prove that any subanalytic locally Lipschitz function has the Sard property. Such functions are typically nonsmooth and their lack of regularity necessitates the choice of some generalized notion of gradient and of critical point. In our framework these notions are defined in terms of the Clarke and of the convex-stable subdifferentials. The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawlucki's extension of the Puiseuxlemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.

Formato

225551 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/1233

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;638

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Funcions contínues
Tipo

info:eu-repo/semantics/preprint