On the value function for nonautonomous optimal control problems with infinite horizon
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/03/2007
|
Resumo |
In this paper we consider nonautonomous optimal control problems of infinite horizon type, whose control actions are given by L-1-functions. We verify that the value function is locally Lipschitz. The equivalence between dynamic programming inequalities and Hamilton-Jacobi-Bellman (HJB) inequalities for proximal sub (super) gradients is proven. Using this result we show that the value function is a Dini solution of the HJB equation. We obtain a verification result for the class of Dini sub-solutions of the HJB equation and also prove a minimax property of the value function with respect to the sets of Dini semi-solutions of the HJB equation. We introduce the concept of viscosity solutions of the HJB equation in infinite horizon and prove the equivalence between this and the concept of Dini solutions. In the Appendix we provide an existence theorem. (c) 2006 Elsevier B.V. All rights reserved. |
Formato |
188-196 |
Identificador |
http://dx.doi.org/10.1016/j.sysconle.2006.08.011 Systems & Control Letters. Amsterdam: Elsevier B.V., v. 56, n. 3, p. 188-196, 2007. 0167-6911 http://hdl.handle.net/11449/32329 10.1016/j.sysconle.2006.08.011 WOS:000244517800003 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Systems & Control Letters |
Direitos |
closedAccess |
Palavras-Chave | #dynamic programming #infinite horizon #viscosity solutions #Dini solutions #existence |
Tipo |
info:eu-repo/semantics/article |