951 resultados para JORDAN ALGEBRAS
Resumo:
The problem of classification of Jordan bit-nodules over (non-semisimple) finite dimensional Jordan algebras with respect to their representation type is considered. The notions of diagram of a Jordan algebra and of Jordan tensor algebra of a bimodule are introduced and a mapping Qui is constructed which associates to the diagram of a Jordan algebra J the quiver of its universal associative enveloping algebra S(J). The main results are concerned with Jordan algebras of semi-matrix type, that is, algebras whose semi-simple component is a direct sum of Jordan matrix algebras. In this case, criterion of finiteness and tameness for one-sided representations are obtained, in terms of diagram and mapping Qui, for Jordan tensor algebras and for algebras with radical square equals to 0. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
A construction relating the structures of super Lie and super Jordan algebras is proposed. This may clarify the role played by field theoretical realizations of super Jordan algebras in constructing representations of super Kač-Moody algebras. The case of OSP(m, n) and super Clifford algebras involving independent Fermi fields and symplectic bosons is discussed in detail.
Resumo:
In this paper we apply the method of functional identities to the study of group gradings by an abelian group G on simple Jordan algebras, under very mild restrictions on the grading group or the base field of coefficients.
Resumo:
Bol algebras appear as the tangent algebra of Bol loops. A (left) Bol algebra is a vector space equipped with a binary operation [a, b] and a ternary operation {a, b, c} that satisfy five defining identities. If A is a left or right alternative algebra then A(b) is a Bol algebra, where [a, b] := ab - ba is the commutator and {a, b, c} := < b, c, a > is the Jordan associator. A special identity is an identity satisfied by Ab for all right alternative algebras A, but not satisfied by the free Bol algebra. We show that there are no special identities of degree <= 7, but there are special identities of degree 8. We obtain all the special identities of degree 8 in partition six-two. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This thesis is dedicated to the Tits-Kantor-Koecher (TKK) construction which establishes a bijective correspondence between unital Jordan algebras and shortly graded Lie algebras with Z-grading induced by an sl_2-triple. It is based on the observation that if g is a Lie algebra with a short Z-grading and f lies in g_1, then the formula ab=[[a,f],b] defines a structure of a Jordan algebra on g_{-1}. The TKK construction has been extended to Jordan triple systems and, more recently, to the so-called Kantor triple systems. These generalizations are studied in the thesis.
Resumo:
Arnold [V.I. Arnold, On matrices depending on parameters, Russian Math. Surveys 26 (2) (1971) 29-43] constructed miniversal deformations of square complex matrices under similarity; that is, a simple normal form to which not only a given square matrix A but all matrices B close to it can be reduced by similarity transformations that smoothly depend on the entries of B. We construct miniversal deformations of matrices under congruence. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We prove that the prime radical rad M of the free Malcev algebra M of rank more than two over a field of characteristic not equal 2 coincides with the set of all universally Engelian elements of M. Moreover, let T(M) be the ideal of M consisting of all stable identities of the split simple 7-dimensional Malcev algebra M over F. It is proved that rad M = J(M) boolean AND T(M), where J(M) is the Jacobian ideal of M. Similar results were proved by I. Shestakov and E. Zelmanov for free alternative and free Jordan algebras.
Resumo:
We prove that every unital bounded linear mapping from a unital purely infinite C*-algebra of real rank zero into a unital Banach algebra which preserves elements of square zero is a Jordan homomorphism. This entails a description of unital surjective spectral isometries as the Jordan isomorphisms in this setting.
Resumo:
We prove that every unital spectrally bounded operator from a properly infinite von Neumann algebra onto a semisimple Banach algebra is a Jordan homomorphism.
Resumo:
We prove that unital surjective spectral isometries on certain non-simple unital C*-algebras are Jordan isomorphisms. Along the way, we establish several general facts in the setting of semisimple Banach algebras.
Resumo:
Let A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded. Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One of the main tools of independent interest is the construction in the free non-associative algebra of multialternating polynomials satisfying special properties. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We prove a coordinatization theorem for noncommutative Jordan superalgebras of degree n > 2, describing such algebras. It is shown that the symmetrized Jordan superalgebra for a simple finite-dimensional noncommutative Jordan superalgebra of characteristic 0 and degree n > 1 is simple. Modulo a ""nodal"" case, we classify central simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0.
Resumo:
We consider polynomial identities satisfied by nonhomogeneous subalgebras of Lie and special Jordan superalgebras: we ignore the grading and regard the superalgebra as an ordinary algebra. The Lie case has been studied by Volichenko and Baranov: they found identities in degrees 3, 4 and 5 which imply all the identities in degrees <= 6. We simplify their identities in degree 5, and show that there are no new identities in degree 7. The Jordan case has not previously been studied: we find identities in degrees 3, 4, 5 and 6 which imply all the identities in degrees <= 6, and demonstrate the existence of further new identities in degree 7. our proofs depend on computer algebra: we use the representation theory of the symmetric group, the Hermite normal form of an integer matrix, the LLL algorithm for lattice basis reduction, and the Chinese remainder theorem. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The construction of Lie algebras in terms of Jordan algebra generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. © 1988.
Resumo:
We give a description of delta-derivations of (n + 1)-dimensional n-ary Filippov algebras and, as a consequence, of simple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero. We also give new examples of non-trivial delta-derivations of Filippov algebras and show that there are no non-trivial delta-derivations of the simple ternary Mal'tsev algebra M-8.