ON THE RADICAL OF A FREE MALCEV ALGEBRA
| Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
|---|---|
| Data(s) |
06/11/2013
06/11/2013
2012
|
| Resumo |
We prove that the prime radical rad M of the free Malcev algebra M of rank more than two over a field of characteristic not equal 2 coincides with the set of all universally Engelian elements of M. Moreover, let T(M) be the ideal of M consisting of all stable identities of the split simple 7-dimensional Malcev algebra M over F. It is proved that rad M = J(M) boolean AND T(M), where J(M) is the Jacobian ideal of M. Similar results were proved by I. Shestakov and E. Zelmanov for free alternative and free Jordan algebras. FAPESP [2010/50347-9, 2008/57680-5] CNPq [305344/2009-9] |
| Identificador |
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, PROVIDENCE, v. 140, n. 9, pp. 3049-3054, SEP, 2012 0002-9939 |
| Idioma(s) |
eng |
| Publicador |
AMER MATHEMATICAL SOC PROVIDENCE |
| Relação |
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY |
| Direitos |
openAccess Copyright AMER MATHEMATICAL SOC |
| Palavras-Chave | #MALCEV ALGEBRA #FREE ALGEBRA #PRIME RADICAL #NILPOTENT ELEMENT #ENGELIAN ELEMENT #MATHEMATICS, APPLIED #MATHEMATICS |
| Tipo |
article original article publishedVersion |