ON THE RADICAL OF A FREE MALCEV ALGEBRA


Autoria(s): Shestakov, I. P.; Kornev, A. I.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

06/11/2013

06/11/2013

2012

Resumo

We prove that the prime radical rad M of the free Malcev algebra M of rank more than two over a field of characteristic not equal 2 coincides with the set of all universally Engelian elements of M. Moreover, let T(M) be the ideal of M consisting of all stable identities of the split simple 7-dimensional Malcev algebra M over F. It is proved that rad M = J(M) boolean AND T(M), where J(M) is the Jacobian ideal of M. Similar results were proved by I. Shestakov and E. Zelmanov for free alternative and free Jordan algebras.

FAPESP [2010/50347-9, 2008/57680-5]

CNPq [305344/2009-9]

Identificador

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, PROVIDENCE, v. 140, n. 9, pp. 3049-3054, SEP, 2012

0002-9939

http://www.producao.usp.br/handle/BDPI/42572

Idioma(s)

eng

Publicador

AMER MATHEMATICAL SOC

PROVIDENCE

Relação

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY

Direitos

openAccess

Copyright AMER MATHEMATICAL SOC

Palavras-Chave #MALCEV ALGEBRA #FREE ALGEBRA #PRIME RADICAL #NILPOTENT ELEMENT #ENGELIAN ELEMENT #MATHEMATICS, APPLIED #MATHEMATICS
Tipo

article

original article

publishedVersion