Jordan isomorphism of purely infinite C*-algebras
Data(s) |
01/06/2007
|
---|---|
Resumo |
We prove that every unital bounded linear mapping from a unital purely infinite C*-algebra of real rank zero into a unital Banach algebra which preserves elements of square zero is a Jordan homomorphism. This entails a description of unital surjective spectral isometries as the Jordan isomorphisms in this setting. |
Identificador |
http://dx.doi.org/10.1093/qmath/hal024 http://www.scopus.com/inward/record.url?scp=34548409123&partnerID=8YFLogxK |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Lin , Y-F & Mathieu , M 2007 , ' Jordan isomorphism of purely infinite C*-algebras ' Quarterly Journal of Mathematics , vol 58 , no. 2 , pp. 249-253 . DOI: 10.1093/qmath/hal024 |
Palavras-Chave | #/dk/atira/pure/subjectarea/asjc/2600 #Mathematics(all) |
Tipo |
article |