Jordan isomorphism of purely infinite C*-algebras


Autoria(s): Lin, Ying-Fen; Mathieu, Martin
Data(s)

01/06/2007

Resumo

We prove that every unital bounded linear mapping from a unital purely infinite C*-algebra of real rank zero into a unital Banach algebra which preserves elements of square zero is a Jordan homomorphism. This entails a description of unital surjective spectral isometries as the Jordan isomorphisms in this setting.

Identificador

http://pure.qub.ac.uk/portal/en/publications/jordan-isomorphism-of-purely-infinite-calgebras(3584bfef-efae-40ba-9316-dc1d6d3eb2ec).html

http://dx.doi.org/10.1093/qmath/hal024

http://www.scopus.com/inward/record.url?scp=34548409123&partnerID=8YFLogxK

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Lin , Y-F & Mathieu , M 2007 , ' Jordan isomorphism of purely infinite C*-algebras ' Quarterly Journal of Mathematics , vol 58 , no. 2 , pp. 249-253 . DOI: 10.1093/qmath/hal024

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/2600 #Mathematics(all)
Tipo

article