961 resultados para Hyperbolic polynomials
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present new sharp inequalities for the Maclaurin coefficients of an entire function from the Laguerre-Pólya class. They are obtained by a new technique involving the so-called very hyperbolic polynomials. The results may be considered as extensions of the classical Turán inequalities. © 2010 Elsevier Inc.
Resumo:
∗ Research partially supported by INTAS grant 97-1644
Resumo:
2000 Mathematics Subject Classification: 12D10.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
2000 Mathematics Subject Classification: 12D10.
Resumo:
MSC 2010: 30C10, 32A30, 30G35
Resumo:
We consider a connection that exists between orthogonal polynomials associated with positive measures on the real line and orthogonal Laurent polynomials associated with strong measures of the class S-3 [0, beta, b]. Examples are given to illustrate the main contribution in this paper. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
2000 Mathematics Subject Classification: 12D10.
Resumo:
The refractive error of a human eye varies across the pupil and therefore may be treated as a random variable. The probability distribution of this random variable provides a means for assessing the main refractive properties of the eye without the necessity of traditional functional representation of wavefront aberrations. To demonstrate this approach, the statistical properties of refractive error maps are investigated. Closed-form expressions are derived for the probability density function (PDF) and its statistical moments for the general case of rotationally-symmetric aberrations. A closed-form expression for a PDF for a general non-rotationally symmetric wavefront aberration is difficult to derive. However, for specific cases, such as astigmatism, a closed-form expression of the PDF can be obtained. Further, interpretation of the distribution of the refractive error map as well as its moments is provided for a range of wavefront aberrations measured in real eyes. These are evaluated using a kernel density and sample moments estimators. It is concluded that the refractive error domain allows non-functional analysis of wavefront aberrations based on simple statistics in the form of its sample moments. Clinicians may find this approach to wavefront analysis easier to interpret due to the clinical familiarity and intuitive appeal of refractive error maps.