590 resultados para Heteroclinic Orbits


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, by using the Poincare compactification in R(3) we make a global analysis of the Lorenz system, including the complete description of its dynamic behavior on the sphere at infinity. Combining analytical and numerical techniques we show that for the parameter value b = 0 the system presents an infinite set of singularly degenerate heteroclinic cycles, which consist of invariant sets formed by a line of equilibria together with heteroclinic orbits connecting two of the equilibria. The dynamical consequences related to the existence of such cycles are discussed. In particular a possibly new mechanism behind the creation of Lorenz-like chaotic attractors, consisting of the change in the stability index of the saddle at the origin as the parameter b crosses the null value, is proposed. Based on the knowledge of this mechanism we have numerically found chaotic attractors for the Lorenz system in the case of small b > 0, so nearby the singularly degenerate heteroclinic cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the dynamics of a class of reversible vector fields having eigenvalues (0, alphai, -alphai) around their symmetric equilibria. We give a complete list of all normal forms for such vector fields, their versal unfoldings, and the corresponding bifurcation diagrams of the codimensional-one case. We also obtain some important conclusions on the existence of homoclinic and heteroclinic orbits, invariant tori and symmetric periodic orbits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is concerned with closed orbits of non-smooth vector fields on the plane. For a class of non-smooth vector fields we provide necessary and sufficient conditions for the existence of closed poly-trajectorie. By means of a regularization process we prove that hyperbolic closed poly-trajectories are limit sets of a sequence of limit cycles of smooth vector fields. In our approach the Poincaré Index for non-smooth vector fields is introduced. © 2013 Springer Science+Business Media New York.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The existence of discontinuities within the double-adiabatic Hall-magnetohydrodynamics (MHD) model is discussed. These solutions are transitional layers where some of the plasma properties change from one equilibrium state to another. Under the assumption of traveling wave solutions with velocity C and propagation angle θ with respect to the ambient magnetic field, the Hall-MHD model reduces to a dynamical system and the waves are heteroclinic orbits joining two different fixed points. The analysis of the fixed points rules out the existence of rotational discontinuities. Simple considerations about the Hamiltonian nature of the system show that, unlike dissipative models, the intermediate shock waves are organized in branches in parameter space, i.e., they occur if a given relationship between θ and C is satisfied. Electron-polarized (ion-polarized) shock waves exhibit, in addition to a reversal of the magnetic field component tangential to the shock front, a maximum (minimum) of the magnetic field amplitude. The jumps of the magnetic field and the relative specific volume between the downstream and the upstream states as a function of the plasma properties are presented. The organization in parameter space of localized structures including in the model the influence of finite Larmor radius is discussed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The non-linear motions of a gyrostat with an axisymmetrical, fluid-filled cavity are investigated. The cavity is considered to be completely filled with an ideal incompressible liquid performing uniform rotational motion. Helmholtz theorem, Euler's angular momentum theorem and Poisson equations are used to develop the disturbed Hamiltonian equations of the motions of the liquid-filled gyrostat subjected to small perturbing moments. The equations are established in terms of a set of canonical variables comprised of Euler angles and the conjugate angular momenta in order to facilitate the application of the Melnikov-Holmes-Marsden (MHM) method to investigate homoclinic/heteroclinic transversal intersections. In such a way, a criterion for the onset of chaotic oscillations is formulated for liquid-filled gyrostats with ellipsoidal and torus-shaped cavities and the results are confirmed via numerical simulations. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chaotic orientations of a top containing a fluid filled cavity are investigated analytically and numerically under small perturbations. The top spins and rolls in nonsliding contact with a rough horizontal plane and the fluid in the ellipsoidal shaped cavity is considered to be ideal and describable by finite degrees of freedom. A Hamiltonian structure is established to facilitate the application of Melnikov-Holmes-Marsden (MHM) integrals. In particular, chaotic motion of the liquid-filled top is identified to be arisen from the transversal intersections between the stable and unstable manifolds of an approximated, disturbed flow of the liquid-filled top via the MHM integrals. The developed analytical criteria are crosschecked with numerical simulations via the 4th Runge-Kutta algorithms with adaptive time steps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper is devoted to the study of a type of differential systems which appear usually in the study of some Hamiltonian systems with 2 degrees of freedom. We prove the existence of infinitely many periodic orbits on each negative energy level. All these periodic orbits pass near the total collision. Finally we apply these results to study the existence of periodic orbits in the charged collinear 3–body problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools for proving this result are, first, the existence in the phase portrait of a symmetry with respect to a plane and, second, the existence of two symmetric heteroclinic loops.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we consider C1 vector fields X in R3 having a “generalized heteroclinic loop” L which is topologically homeomorphic to the union of a 2–dimensional sphere S2 and a diameter connecting the north with the south pole. The north pole is an attractor on S2 and a repeller on . The equator of the sphere is a periodic orbit unstable in the north hemisphere and stable in the south one. The full space is topologically homeomorphic to the closed ball having as boundary the sphere S2. We also assume that the flow of X is invariant under a topological straight line symmetry on the equator plane of the ball. For each n ∈ N, by means of a convenient Poincar´e map, we prove the existence of infinitely many symmetric periodic orbits of X near L that gives n turns around L in a period. We also exhibit a class of polynomial vector fields of degree 4 in R3 satisfying this dynamics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we consider vector fields in R3 that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e+ and e −) and their invariant manifolds: one of dimension 2 (a sphere minus the points e+ and e −) and one of dimension 1 (the open diameter of the sphere having endpoints e+ and e −). In particular, we analyze the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar´e map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R3, and the second one is the charged rhomboidal four body problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work are studied periodic perturbations, depending on two parameters, of planar polynomial vector fields having an annulus of large amplitude periodic orbits, which accumulate on a symmetric infinite heteroclinic cycle. Such periodic orbits and the heteroclinic trajectory can be seen only by the global consideration of the polynomial vector fields on the whole plane, and not by their restriction to any compact set. The global study involving infinity is performed via the Poincare Compactification. It is shown that, for certain types of periodic perturbations, one can seek, in a neighborhood of the origin in the parameter plane, curves C-(m) of subharmonic bifurcations, for which the periodically perturbed system has subharmonics of order m, for any integer m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a class of reversible quadratic vector fields on R-3 we study the periodic orbits that bifurcate from a heteroclinic loop having two singular points at infinity connected by an invariant straight line in the finite part and another straight line at infinity in the local chart U-2. More specifically, we prove that for all n is an element of N, there exists epsilon(n) > 0 such that the reversible quadratic polynomial differential systemx = a(0) + a(1y) + a(3y)(2) + a(4Y)(2) + epsilon(a(2x)(2) + a(3xz)),y = b(1z) + b(3yz) + epsilon b(2xy),z = c(1y) +c(4az)(2) + epsilon c(2xz)in R-3, with a(0) < 0, b(1)c(1) < 0, a(2) < 0, b(2) < a(2), a(4) > 0, c(2) < a(2) and b(3) is not an element of (c(4), 4c(4)), for epsilon is an element of (0, epsilon(n)) has at least n periodic orbits near the heteroclinic loop. (c) 2007 Elsevier B.V. All rights reserved.