Symmetric periodic orbits near heteroclinic loops at infinity for a class of polynomial vector fields


Autoria(s): Corbera Subirana, Montserrat; Llibre, Jaume
Contribuinte(s)

Universitat de Vic. Escola Politècnica Superior

Universitat de Vic. Grup de Recerca en Tecnologies Digitals

Data(s)

2006

Resumo

For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools for proving this result are, first, the existence in the phase portrait of a symmetry with respect to a plane and, second, the existence of two symmetric heteroclinic loops.

Formato

11 p.

Identificador

http://hdl.handle.net/10854/2210

Idioma(s)

eng

Publicador

World Scientific Publishing

Direitos

Electronic version of an article published as International Journal of Bifurcation and Chaos, 2006, vol. 16, núm. 11, pàg. 3401-3410. [10.1142/S0218127406016884] © [copyright World Scientific Publishing Company] [http://www.worldscientific.com/doi/abs/10.1142/S0218127406016884?journalCode=ijbc]

Tots els drets reservats

Palavras-Chave #Matemàtica
Tipo

info:eu-repo/semantics/article