Periodic orbits for a class of reversible quadratic vector field on R-3


Autoria(s): Buzzi, Claudio Aguinaldo; Llibre, Jaume; Medrado, João Carlos da Rocha
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

15/11/2007

Resumo

For a class of reversible quadratic vector fields on R-3 we study the periodic orbits that bifurcate from a heteroclinic loop having two singular points at infinity connected by an invariant straight line in the finite part and another straight line at infinity in the local chart U-2. More specifically, we prove that for all n is an element of N, there exists epsilon(n) > 0 such that the reversible quadratic polynomial differential systemx = a(0) + a(1y) + a(3y)(2) + a(4Y)(2) + epsilon(a(2x)(2) + a(3xz)),y = b(1z) + b(3yz) + epsilon b(2xy),z = c(1y) +c(4az)(2) + epsilon c(2xz)in R-3, with a(0) < 0, b(1)c(1) < 0, a(2) < 0, b(2) < a(2), a(4) > 0, c(2) < a(2) and b(3) is not an element of (c(4), 4c(4)), for epsilon is an element of (0, epsilon(n)) has at least n periodic orbits near the heteroclinic loop. (c) 2007 Elsevier B.V. All rights reserved.

Formato

1335-1346

Identificador

http://dx.doi.org/10.1016/j.jmaa.2007.02.011

Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B. V., v. 335, n. 2, p. 1335-1346, 2007.

0022-247X

http://hdl.handle.net/11449/33824

10.1016/j.jmaa.2007.02.011

WOS:000248854000042

WOS000248854000042.pdf

Idioma(s)

eng

Publicador

Elsevier B. V.

Relação

Journal of Mathematical Analysis and Applications

Direitos

openAccess

Palavras-Chave #Periodic orbits #Quadratic vector fields #Reversibility
Tipo

info:eu-repo/semantics/article