962 resultados para Hamming code
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article has the purpose to review the main codes used to detect and correct errors in data communication specifically in the computer's network. The Hamming's code and the Ciclic Redundancy Code (CRC) are presented as the focus of this article as well as CRC hardware implementation. Each code is reviewed in details in order to fill the gaps in the literature and to make it accessible to the computer science and engineering students as well as to anyone who may be interested in learning the technique to treat error in data communication.
Resumo:
Currently, there has been an increasing demand for operational and trustworthy digital data transmission and storage systems. This demand has been augmented by the appearance of large-scale, high-speed data networks for the exchange, processing and storage of digital information in the different spheres. In this paper, we explore a way to achieve this goal. For given positive integers n,r, we establish that corresponding to a binary cyclic code C0[n,n-r], there is a binary cyclic code C[(n+1)3k-1,(n+1)3k-1-3kr], where k is a nonnegative integer, which plays a role in enhancing code rate and error correction capability. In the given scheme, the new code C is in fact responsible to carry data transmitted by C0. Consequently, a codeword of the code C0 can be encoded by the generator matrix of C and therefore this arrangement for transferring data offers a safe and swift mode. © 2013 SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Corresponding to $C_{0}[n,n-r]$, a binary cyclic code generated by a primitive irreducible polynomial $p(X)\in \mathbb{F}_{2}[X]$ of degree $r=2b$, where $b\in \mathbb{Z}^{+}$, we can constitute a binary cyclic code $C[(n+1)^{3^{k}}-1,(n+1)^{3^{k}}-1-3^{k}r]$, which is generated by primitive irreducible generalized polynomial $p(X^{\frac{1}{3^{k}}})\in \mathbb{F}_{2}[X;\frac{1}{3^{k}}\mathbb{Z}_{0}]$ with degree $3^{k}r$, where $k\in \mathbb{Z}^{+}$. This new code $C$ improves the code rate and has error corrections capability higher than $C_{0}$. The purpose of this study is to establish a decoding procedure for $C_{0}$ by using $C$ in such a way that one can obtain an improved code rate and error-correcting capabilities for $C_{0}$.
Resumo:
Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction.
Resumo:
In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, quantum computing and nanotechnology. Low power circuits implemented using reversible logic that provides single error correction – double error detection (SEC-DED) is proposed in this paper. The design is done using a new 4 x 4 reversible gate called ‘HCG’ for implementing hamming error coding and detection circuits. A parity preserving HCG (PPHCG) that preserves the input parity at the output bits is used for achieving fault tolerance for the hamming error coding and detection circuits.
Resumo:
Considers channel capacity, coding rate, repetition code, Hamming code, Hamming distance
Resumo:
This thesis regards the Wireless Sensor Network (WSN), as one of the most important technologies for the twenty-first century and the implementation of different packet correcting erasure codes to cope with the ”bursty” nature of the transmission channel and the possibility of packet losses during the transmission. The limited battery capacity of each sensor node makes the minimization of the power consumption one of the primary concerns in WSN. Considering also the fact that in each sensor node the communication is considerably more expensive than computation, this motivates the core idea to invest computation within the network whenever possible to safe on communication costs. The goal of the research was to evaluate a parameter, for example the Packet Erasure Ratio (PER), that permit to verify the functionality and the behavior of the created network, validate the theoretical expectations and evaluate the convenience of introducing the recovery packet techniques using different types of packet erasure codes in different types of networks. Thus, considering all the constrains of energy consumption in WSN, the topic of this thesis is to try to minimize it by introducing encoding/decoding algorithms in the transmission chain in order to prevent the retransmission of the erased packets through the Packet Erasure Channel and save the energy used for each retransmitted packet. In this way it is possible extend the lifetime of entire network.
Resumo:
The modem digital communication systems are made transmission reliable by employing error correction technique for the redundancies. Codes in the low-density parity-check work along the principles of Hamming code, and the parity-check matrix is very sparse, and multiple errors can be corrected. The sparseness of the matrix allows for the decoding process to be carried out by probability propagation methods similar to those employed in Turbo codes. The relation between spin systems in statistical physics and digital error correcting codes is based on the existence of a simple isomorphism between the additive Boolean group and the multiplicative binary group. Shannon proved general results on the natural limits of compression and error-correction by setting up the framework known as information theory. Error-correction codes are based on mapping the original space of words onto a higher dimensional space in such a way that the typical distance between encoded words increases.
Resumo:
International audience
Resumo:
We address the problem of designing codes for specific applications using deterministic annealing. Designing a block code over any finite dimensional space may be thought of as forming the corresponding number of clusters over the particular dimensional space. We have shown that the total distortion incurred in encoding a training set is related to the probability of correct reception over a symmetric channel. While conventional deterministic annealing make use of the Euclidean squared error distance measure, we have developed an algorithm that can be used for clustering with Hamming distance as the distance measure, which is required in the error correcting, scenario.