A decoding method of an n length binary BCH code through (n + 1)n length binary cyclic code


Autoria(s): Shah, Tariq; Khan, Mubashar; De Andrade, Antonio Aparecido
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/09/2013

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Processo FAPESP: 07/56052-8

Processo FAPESP: 11/03441-2

For a given binary BCH code Cn of length n = 2s-1 generated by a polynomial g(x)e{open}F2[x] of degree r there is no binary BCH code of length (n + 1)n generated by a generalized polynomial g(x1/2)e{open}F2[x1/2ℤ ≥ 0] of degree 2r. However, it does exist a binary cyclic code C(n+1)n of length (n + 1)n such that the binary BCH code Cn is embedded in C(n+1)n. Accordingly a high code rate is attained through a binary cyclic code C(n+1)n for a binary BCH code Cn. Furthermore, an algorithm proposed facilitates in a decoding of a binary BCH code Cn through the decoding of a binary cyclic code C(n+1)n, while the codes Cn and C(n+1)n have the same minimum hamming distance.

Formato

863-872

Identificador

http://dx.doi.org/10.1590/S0001-37652013000300002

Anais da Academia Brasileira de Ciencias, v. 85, n. 3, p. 863-872, 2013.

0001-3765

1678-2690

http://hdl.handle.net/11449/76462

10.1590/S0001-37652013000300002

S0001-37652013000300002

S0001-37652013000300863

WOS:000324948400002

2-s2.0-84884235776

2-s2.0-84884235776.pdf

Idioma(s)

eng

Relação

Anais da Academia Brasileira de Ciências

Direitos

openAccess

Palavras-Chave #BCH code #Binary cyclic code #Binary Hamming code #Decoding algorithm
Tipo

info:eu-repo/semantics/article