A decoding method of an n length binary BCH code through (n + 1)n length binary cyclic code
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
01/09/2013
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 07/56052-8 Processo FAPESP: 11/03441-2 For a given binary BCH code Cn of length n = 2s-1 generated by a polynomial g(x)e{open}F2[x] of degree r there is no binary BCH code of length (n + 1)n generated by a generalized polynomial g(x1/2)e{open}F2[x1/2ℤ ≥ 0] of degree 2r. However, it does exist a binary cyclic code C(n+1)n of length (n + 1)n such that the binary BCH code Cn is embedded in C(n+1)n. Accordingly a high code rate is attained through a binary cyclic code C(n+1)n for a binary BCH code Cn. Furthermore, an algorithm proposed facilitates in a decoding of a binary BCH code Cn through the decoding of a binary cyclic code C(n+1)n, while the codes Cn and C(n+1)n have the same minimum hamming distance. |
Formato |
863-872 |
Identificador |
http://dx.doi.org/10.1590/S0001-37652013000300002 Anais da Academia Brasileira de Ciencias, v. 85, n. 3, p. 863-872, 2013. 0001-3765 1678-2690 http://hdl.handle.net/11449/76462 10.1590/S0001-37652013000300002 S0001-37652013000300002 S0001-37652013000300863 WOS:000324948400002 2-s2.0-84884235776 2-s2.0-84884235776.pdf |
Idioma(s) |
eng |
Relação |
Anais da Academia Brasileira de Ciências |
Direitos |
openAccess |
Palavras-Chave | #BCH code #Binary cyclic code #Binary Hamming code #Decoding algorithm |
Tipo |
info:eu-repo/semantics/article |