913 resultados para HIGH-QUALITY CDS
Resumo:
High quality n-type CdS nanobelts (NBs) were synthesized via an in situ indium doping chemical vapor deposition method and fabricated into field effect transistors (FETs). The electron concentrations and mobilities of these CdS NBs are around (1.0x10(16)-3.0x10(17))/cm(3) and 100-350 cm(2)/V s, respectively. An on-off ratio greater than 10(8) and a subthreshold swing as small as 65 mV/decade are obtained at room temperature, which give the best performance of CdS nanowire/nanobelt FETs reported so far. n-type CdS NB/p(+)-Si heterojunction light emitting diodes were fabricated. Their electroluminescence spectra are dominated by an intense sharp band-edge emission and free from deep-level defect emissions. (c) 2006 American Institute of Physics.
Resumo:
The current world situation is plagued by “wicked problems” and a widespread sense of “things are going to get worse”. We confront the almost imponderable consequences of global habitat destruction and climate change, as well as the meltdown of the financial markets with their largely yet to be seen damage to the “real economy”. These things will have considerable negative impacts on the social system and people's lives, particularly the disadvantaged and socially excluded, and require innovative policy and program responses delivered by caring, intelligent, and committed practitioners. These gargantuan issues put into perspective the difficulties that confront social, welfare, and community work today. Yet, in times of trouble, social work and human services tend to do well. For example, although Australian Social Workers and Welfare and Community Workers have experienced phenomenal job growth over the past 5 years, they also have good prospects for future growth and above average salaries in the seventh and sixth deciles, respectively (Department of Education, Employment and Workplace Relations, 2008). I aim to examine the host of reasons why the pursuit of social justice and high-quality human services is difficult to attain in today's world and then consider how the broadly defined profession of social welfare practitioners may collectively take action to (a) respond in ways that reassert our role in compassionately assisting the downtrodden and (b) reclaim the capacity to be a significant body of professional expertise driving social policy and programs. For too long social work has responded to the wider factors it confronts through a combination of ignoring them, critiquing from a distance, and concentrating on the job at hand and our day-to-day responsibilities. Unfortunately, “holding the line” has proved futile and, little by little, the broad social mandate and role of social welfare has altered until, currently, most social programs entail significant social surveillance of troublesome or dangerous groups, rather than assistance. At times it almost seems like the word “help” has been lost in the political and managerial lexicon, replaced by “manage” and “control”. Our values, beliefs, and ethics are under real threat as guiding principles for social programs.
Resumo:
This report is for one of the four Tasks of the CRC project ‘Regenerating Construction to Enhance Sustainability’. The report specifically addresses Task 2 ‘Design guidelines for delivering high quality indoor environments’.
Resumo:
The quality of office indoor environments is considered to consist of those factors that impact the occupants according to their health and well-being and (by consequence) their productivity. Indoor Environment Quality (IEQ) can be characterized by four indicators: • Indoor air quality indicators • Thermal comfort indicators • Lighting indicators • Noise indicators. Within each indicator, there are specific metrics that can be utilized in determining an acceptable quality of an indoor environment based on existing knowledge and best practice. Examples of these metrics are: indoor air levels of pollutants or odorants; operative temperature and its control; radiant asymmetry; task lighting; glare; ambient noise. The way in which these metrics impact occupants is not fully understood, especially when multiple metrics may interact in their impacts. It can be estimated that the potential cost of lost productivity from poor IEQ may be much in excess of other operating costs of a building. However, the relative productivity impacts of each of the four indicators is largely unknown. The CRC Project ‘Regenerating Construction to Enhance Sustainability’ has a focus on IEQ impacts before and after building refurbishment. This paper provides an overview of IEQ impacts and criteria and the implementation of a CRC project that is currently researching these factors during the refurbishment of a Melbourne office building. IEQ measurements and their impacts will be reported in a future paper
Resumo:
The quality of office indoor environments is considered to consist of those factors that impact occupants according to their health and well-being and (by consequence) their productivity. Indoor Environment Quality (IEQ) can be characterized by four indicators: • Indoor air quality indicators • Thermal comfort indicators • Lighting indicators • Noise indicators. Within each indicator, there are specific metrics that can be utilized in determining an acceptable quality of an indoor environment based on existing knowledge and best practice. Examples of these metrics are: indoor air levels of pollutants or odorants; operative temperature and its control; radiant asymmetry; task lighting; glare; ambient noise. The way in which these metrics impact occupants is not fully understood, especially when multiple metrics may interact in their impacts. While the potential cost of lost productivity from poor IEQ has been estimated to exceed building operation costs, the level of impact and the relative significance of the above four indicators are largely unknown. However, they are key factors in the sustainable operation or refurbishment of office buildings. This paper presents a methodology for assessing indoor environment quality (IEQ) in office buildings, and indicators with related metrics for high performance and occupant comfort. These are intended for integration into the specification of sustainable office buildings as key factors to ensure a high degree of occupant habitability, without this being impaired by other sustainability factors. The assessment methodology was applied in a case study on IEQ in Australia’s first ‘six star’ sustainable office building, Council House 2 (CH2), located in the centre of Melbourne. The CH2 building was designed and built with specific focus on sustainability and the provision of a high quality indoor environment for occupants. Actual IEQ performance was assessed in this study by field assessment after construction and occupancy. For comparison, the methodology was applied to a 30 year old conventional building adjacent to CH2 which housed the same or similar occupants and activities. The impact of IEQ on occupant productivity will be reported in a separate future paper
Resumo:
The issue of what an effective high quality / high equity education system might look like remains contested. Indeed there is more educational commentary on those systems that do not achieve this goal (see for example Luke & Woods, 2009 for a detailed review of the No Child Left Behind policy initiatives put forward in the United States under the Bush Administration) than there is detailed consideration of what such a system might enact and represent. A long held critique of socio cultural and critical perspectives in education has been their focus on deconstruction to the supposed detriment of reconstructive work. This critique is less warranted in recent times based on work in the field, especially the plethora of qualitative research focusing on case studies of ‘best practice’. However it certainly remains the case that there is more work to be done in investigating the characteristics of a socially just system. This issue of Point and Counterpoint aims to progress such a discussion. Several of the authors call for a reconfiguration of the use of large scale comparative assessment measures and all suggest new ways of thinking about quality and equity for school systems. Each of the papers tackles different aspects of the problematic of how to achieve high equity without compromising quality within a large education system. They each take a reconstructive focus, highlighting ways forward for education systems in Australia and beyond. While each paper investigates different aspects of the issue, the clearly stated objective of seeking to delineate and articulate characteristics of socially just education is consistent throughout the issue.
Resumo:
The Australian Government has committed $970 million over 5 years to fund the expansion of preschool education and has established a National Early Childhood Education Partnership Agreement with States and Territories to achieve universal preschool access by 2013. The Partnership Agreement acknowledges the role of State and Territory Government in preschool education, and different approaches to preschool provision. It also recognises differences in current preschool participation rates across states and territories. This paper offers snapshots of a number of different models of preschool provision, spanning traditional sessional approaches to some integrated and innovative approaches within the long day care context. The paper explores the newer long day care model and offers recommendations for the delivery of preschool education within this different context.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
Resumo:
This article proposes offence-specific guidelines for how prosecutorial discretion should be exercised in cases of voluntary euthanasia and assisted suicide. Similar guidelines have been produced in England and Wales but we consider them to be deficient in a number of respects, including that they lack a set of coherent guiding principles. In light of these concerns, we outline an approach to constructing alternative guidelines that begins with identifying three guiding principles that we argue are appropriate for this purpose: respect for autonomy, the need for high quality prosecutorial decision-making and the importance of public confidence in that decision-making.
Resumo:
Despite major advances in the fabrication and characterization of SiC and related materials, there has been no convincing evidence of the synthesis of nanodevice-quality nanoislanded SiC films at low, ultralarge scale integration technology-compatible process temperatures. The authors report on a low-temperature (400 °C) plasma-assisted rf magnetron sputtering deposition of high-quality nanocrystalline SiC films made of uniform-size nanoislands that almost completely cover the Si(100) surface. These nanoislands are chemically pure, highly stoichiometric, have a typical size of 20-35 nm, and contain small (∼5 nm) nanocrystalline inclusions. The properties of nanocrystalline SiC films can be effectively controlled by the plasma parameters.
Resumo:
The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study we explore the emotional climates, that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality learning experiences for preservice science teachers. Theories related to the sociology of emotions informed our analyses from data sources such as preservice teachers’ perceptions of the emotional climate of their class, emotional facial expressions, classroom conversations, and cogenerative dialogue. The major outcome from our analyses was that even though preservice teachers reported high positive emotional climate during the professor’s science demonstrations, they also valued the professor’s in the moment reflections on her teaching that were associated with low emotional climate ratings. We co-relate emotional climate data and preservice teachers’ comments during cogenerative dialogue to expand our understanding of high quality experiences and emotional climate in science teacher education. Our study also contributes refinements to research perspectives on emotional climate.
Resumo:
Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage.