997 resultados para Geometric theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We continue the investigation of the algebraic and topological structure of the algebra of Colombeau generalized functions with the aim of building up the algebraic basis for the theory of these functions. This was started in a previous work of Aragona and Juriaans, where the algebraic and topological structure of the Colombeau generalized numbers were studied. Here, among other important things, we determine completely the minimal primes of (K) over bar and introduce several invariants of the ideals of 9(Q). The main tools we use are the algebraic results obtained by Aragona and Juriaans and the theory of differential calculus on generalized manifolds developed by Aragona and co-workers. The main achievement of the differential calculus is that all classical objects, such as distributions, become Cl-functions. Our purpose is to build an independent and intrinsic theory for Colombeau generalized functions and place them in a wider context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A continuous version of the hierarchical spherical model at dimension d=4 is investigated. Two limit distributions of the block spin variable X(gamma), normalized with exponents gamma = d + 2 and gamma=d at and above the critical temperature, are established. These results are proven by solving certain evolution equations corresponding to the renormalization group (RG) transformation of the O(N) hierarchical spin model of block size L(d) in the limit L down arrow 1 and N ->infinity. Starting far away from the stationary Gaussian fixed point the trajectories of these dynamical system pass through two different regimes with distinguishable crossover behavior. An interpretation of this trajectories is given by the geometric theory of functions which describe precisely the motion of the Lee-Yang zeroes. The large-N limit of RG transformation with L(d) fixed equal to 2, at the criticality, has recently been investigated in both weak and strong (coupling) regimes by Watanabe (J. Stat. Phys. 115:1669-1713, 2004) . Although our analysis deals only with N = infinity case, it complements various aspects of that work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We are currently at the cusp of a revolution in quantum technology that relies not just on the passive use of quantum effects, but on their active control. At the forefront of this revolution is the implementation of a quantum computer. Encoding information in quantum states as “qubits” allows to use entanglement and quantum superposition to perform calculations that are infeasible on classical computers. The fundamental challenge in the realization of quantum computers is to avoid decoherence – the loss of quantum properties – due to unwanted interaction with the environment. This thesis addresses the problem of implementing entangling two-qubit quantum gates that are robust with respect to both decoherence and classical noise. It covers three aspects: the use of efficient numerical tools for the simulation and optimal control of open and closed quantum systems, the role of advanced optimization functionals in facilitating robustness, and the application of these techniques to two of the leading implementations of quantum computation, trapped atoms and superconducting circuits. After a review of the theoretical and numerical foundations, the central part of the thesis starts with the idea of using ensemble optimization to achieve robustness with respect to both classical fluctuations in the system parameters, and decoherence. For the example of a controlled phasegate implemented with trapped Rydberg atoms, this approach is demonstrated to yield a gate that is at least one order of magnitude more robust than the best known analytic scheme. Moreover this robustness is maintained even for gate durations significantly shorter than those obtained in the analytic scheme. Superconducting circuits are a particularly promising architecture for the implementation of a quantum computer. Their flexibility is demonstrated by performing optimizations for both diagonal and non-diagonal quantum gates. In order to achieve robustness with respect to decoherence, it is essential to implement quantum gates in the shortest possible amount of time. This may be facilitated by using an optimization functional that targets an arbitrary perfect entangler, based on a geometric theory of two-qubit gates. For the example of superconducting qubits, it is shown that this approach leads to significantly shorter gate durations, higher fidelities, and faster convergence than the optimization towards specific two-qubit gates. Performing optimization in Liouville space in order to properly take into account decoherence poses significant numerical challenges, as the dimension scales quadratically compared to Hilbert space. However, it can be shown that for a unitary target, the optimization only requires propagation of at most three states, instead of a full basis of Liouville space. Both for the example of trapped Rydberg atoms, and for superconducting qubits, the successful optimization of quantum gates is demonstrated, at a significantly reduced numerical cost than was previously thought possible. Together, the results of this thesis point towards a comprehensive framework for the optimization of robust quantum gates, paving the way for the future realization of quantum computers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente documento es un estudio detallado del problema conocido bajo el título de Problema de Alhacén. Este problema fue formulado en el siglo X por el filósofo y matemático árabe conocido en occidente bajo el nombre de Alhacén. El documento hace una breve presentación del filósofo y una breve reseña de su trascendental tratado de óptica Kitab al-Manazir. A continuación el documento se detiene a estudiar cuidadosamente los lemas requeridos para enfrentar el problema y se presentan las soluciones para el caso de los espejos esféricos (convexos y cóncavos), cilíndricos y cónicos. También se ofrece una conjetura que habría de explicar la lógica del descubrimiento implícita en la solución que ofreció Alhacén. Tanto los lemas como las soluciones se han modelado en los software de geometría dinámica Cabri II-Plus y Cabri 3-D. El lector interesado en seguir dichas modelaciones debe contar con los programas mencionados para adelantar la lectura de los archivos. En general, estas presentaciones constan de tres partes: (i) formulación del problema (se formula en forma concisa el problema); (ii) esquema general de la construcción (se presentan los pasos esenciales que conducen a la construcción solicitada y las construcciones auxiliares que demanda el problema), esta parte se puede seguir en los archivos de Cabri; y (iii) demostración (se ofrece la justificación detallada de la construcción requerida). Los archivos en Cabri II plus cuentan con botones numerados que pueden activarse haciendo “Click” sobre ellos. La numeración corresponde a la numeración presente en el documento. El lector puede desplazar a su antojo los puntos libres que pueden reconocerse porque ellos se distinguen con la siguiente marca (º). Los puntos restantes no pueden modificarse pues son el resultado de construcciones adelantadas y ajustadas a los protocolos recomendados en el esquema general.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The flow of Ricci is an analytical tool, and a similar equation for heat geometry, a diffusive process which acts on a variety of metrics Riemannian and thus can be used in mathematics to understand the topology of varieties and also in the study geometric theories. Thus, the Ricci curvature plays an important role in the General Theory of Relativity, characterized as a geometric theory, which is the dominant term in the Einstein field equations. The present work has as main objectives to develop and apply Ricci flow techniques to general relativity, in this case, a three-dimensional asymptotically flat Riemannian metric as a set of initial data for Einstein equations and establish relations and comparisons between them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let π : FM ! M be the bundle of linear frames of a manifold M. A basis Lijk , j < k, of diffeomorphism invariant Lagrangians on J1 (FM) was determined in [J. Muñoz Masqué, M. E. Rosado, Invariant variational problems on linear frame bundles, J. Phys. A35 (2002) 2013-2036]. The notion of a characteristic hypersurface for an arbitrary first-order PDE system on an ar- bitrary bred manifold π : P → M, is introduced and for the systems dened by the Euler-Lagrange equations of Lijk every hypersurface is shown to be characteristic. The Euler-Lagrange equations of the natural basis of Lagrangian densities Lijk on the bundle of linear frames of a manifold M which are invariant under diffeomorphisms, are shown to be an underdetermined PDEs systems such that every hypersurface of M is characteristic for such equations. This explains why these systems cannot be written in the Cauchy-Kowaleska form, although they are known to be formally integrable by using the tools of geometric theory of partial differential equations, see [J. Muñoz Masqué, M. E. Rosado, Integrability of the eld equations of invariant variational problems on linear frame bundles, J. Geom. Phys. 49 (2004), 119-155]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La seguente tesi propone un’introduzione al geometric deep learning. Nella prima parte vengono presentati i concetti principali di teoria dei grafi ed introdotta una dinamica di diffusione su grafo, in analogia con l’equazione del calore. A seguire, iniziando dal linear classifier verranno introdotte le architetture che hanno portato all’ideazione delle graph convolutional networks. In conclusione, si analizzano esempi di alcuni algoritmi utilizzati nel geometric deep learning e si mostra una loro implementazione sul Cora dataset, un insieme di dati con struttura a grafo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum adiabatic pumping of charge and spin between two reservoirs (leads) has recently been demonstrated in nanoscale electronic devices. Pumping occurs when system parameters are varied in a cyclic manner and sufficiently slowly that the quantum system always remains in its ground state. We show that quantum pumping has a natural geometric representation in terms of gauge fields (both Abelian and non-Abelian) defined on the space of system parameters. Tunneling from a scanning tunneling microscope tip through a magnetic atom could be used to demonstrate the non-Abelian character of the gauge field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an alternative geometric framework for analysing the inter-relationship between domestic saving, productivity and income determination in discrete time. The framework provides a means of understanding how low saving economies like the United States sustained high growth rates in the 1990s whereas high saving Japan did not. It also illustrates how the causality between saving and economic activity runs both ways and that discrete changes in national output and income depend on both current and previous accumulation behaviour. The open economy analogue reveals how international capital movements can create external account imbalances that enhance income growth for both borrower and lender economies. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reinterpret the state space dimension equations for geometric Goppa codes. An easy consequence is that if deg G less than or equal to n-2/2 or deg G greater than or equal to n-2/2 + 2g then the state complexity of C-L(D, G) is equal to the Wolf bound. For deg G is an element of [n-1/2, n-3/2 + 2g], we use Clifford's theorem to give a simple lower bound on the state complexity of C-L(D, G). We then derive two further lower bounds on the state space dimensions of C-L(D, G) in terms of the gonality sequence of F/F-q. (The gonality sequence is known for many of the function fields of interest for defining geometric Goppa codes.) One of the gonality bounds uses previous results on the generalised weight hierarchy of C-L(D, G) and one follows in a straightforward way from first principles; often they are equal. For Hermitian codes both gonality bounds are equal to the DLP lower bound on state space dimensions. We conclude by using these results to calculate the DLP lower bound on state complexity for Hermitian codes.