Geometric singular perturbartion theory for non-smooth dynamical systems
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/04/2015
27/04/2015
2014
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 2013/21947-6 In this article we deal with singularly perturbed Filippov systems Zε: (1) ˙x = ( F(x, y, ε) if h(x, y, ε) ≤ 0, G(x, y, ε) if h(x, y, ε) ≥ 0, εy˙ = H(x, y, ε), where ε ∈ R is a small parameter, x ∈ Rn, n ≥ 2, and y ∈ R denote the slow and fast variables, respectively, and F, G, h, and H are smooth maps. We study the effect of singular perturbations at typical singularities of Z0. Special attention will be dedicated to those points satisfying q ∈ {h(x, y, 0) = 0} ∩ {H(x, y, 0) = 0} where F or G is tangent to {h(x, y, 0) = 0}. The persistence and the stability properties of those objects are investigated. |
Formato |
111-134 |
Identificador |
http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_Extra14_06 Publicacions Matemàtiques, v. EXTRA, p. 111-134, 2014. 0214-1493 http://hdl.handle.net/11449/122732 http://dx.doi.org/10.5565/publmat_extra14_06 6050955861168161 8032879915906661 5876069431008771 |
Idioma(s) |
eng |
Relação |
Publicacions Matemàtiques |
Direitos |
closedAccess |
Palavras-Chave | #Filippov systems #singular perturbation #tangency points |
Tipo |
info:eu-repo/semantics/article |