Geometric singular perturbartion theory for non-smooth dynamical systems


Autoria(s): Cardin, Pedro Toniol; Silva, Paulo Ricardo da; Teixeira, Marco Antônio
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/04/2015

27/04/2015

2014

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Processo FAPESP: 2013/21947-6

In this article we deal with singularly perturbed Filippov systems Zε: (1) ˙x = ( F(x, y, ε) if h(x, y, ε) ≤ 0, G(x, y, ε) if h(x, y, ε) ≥ 0, εy˙ = H(x, y, ε), where ε ∈ R is a small parameter, x ∈ Rn, n ≥ 2, and y ∈ R denote the slow and fast variables, respectively, and F, G, h, and H are smooth maps. We study the effect of singular perturbations at typical singularities of Z0. Special attention will be dedicated to those points satisfying q ∈ {h(x, y, 0) = 0} ∩ {H(x, y, 0) = 0} where F or G is tangent to {h(x, y, 0) = 0}. The persistence and the stability properties of those objects are investigated.

Formato

111-134

Identificador

http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_Extra14_06

Publicacions Matemàtiques, v. EXTRA, p. 111-134, 2014.

0214-1493

http://hdl.handle.net/11449/122732

http://dx.doi.org/10.5565/publmat_extra14_06

6050955861168161

8032879915906661

5876069431008771

Idioma(s)

eng

Relação

Publicacions Matemàtiques

Direitos

closedAccess

Palavras-Chave #Filippov systems #singular perturbation #tangency points
Tipo

info:eu-repo/semantics/article