THREE TIME SCALE SINGULAR PERTURBATION PROBLEMS AND NONSMOOTH DYNAMICAL SYSTEMS
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
18/03/2015
18/03/2015
01/01/2014
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Processo FAPESP: 13/21947-6 Processo FAPESP: 12/18780-0 In this paper we study three time scale singular perturbation problemsepsilon x ' = f(x, epsilon, delta), y ' = g(x, epsilon, delta), z ' = delta h(x, delta, delta),where x = (x, y, z) is an element of R-n x R-m x R-p, epsilon and delta are two independent small parameters (0 < epsilon, delta << 1), and f, g, h are C-r functions, where r is big enough for our purposes. We establish conditions for the existence of compact invariant sets (singular points, periodic and homoclinic orbits) when epsilon, delta > 0. Our main strategy is to consider three time scales which generate three different limit problems. In addition, we prove that double regularization of nonsmooth dynamical systems with self-intersecting switching variety provides a class of three time scale singular perturbation problems. |
Formato |
673-687 |
Identificador |
http://www.ams.org/journals/qam/2014-72-04/S0033-569X-2014-01360-X/ Quarterly Of Applied Mathematics. Boston: Brown Univ, v. 72, n. 4, p. 673-687, 2014. 0033-569X http://hdl.handle.net/11449/117698 WOS:000346649200005 |
Idioma(s) |
eng |
Publicador |
Brown Univ |
Relação |
Quarterly Of Applied Mathematics |
Direitos |
closedAccess |
Palavras-Chave | #Geometric theory #singular perturbations #three time scales #nonsmooth dynamical systems |
Tipo |
info:eu-repo/semantics/article |