THREE TIME SCALE SINGULAR PERTURBATION PROBLEMS AND NONSMOOTH DYNAMICAL SYSTEMS


Autoria(s): Cardin, Pedro T.; Da Silva, Paulo R.; Teixeira, Marco A.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

18/03/2015

18/03/2015

01/01/2014

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Processo FAPESP: 13/21947-6

Processo FAPESP: 12/18780-0

In this paper we study three time scale singular perturbation problemsepsilon x ' = f(x, epsilon, delta), y ' = g(x, epsilon, delta), z ' = delta h(x, delta, delta),where x = (x, y, z) is an element of R-n x R-m x R-p, epsilon and delta are two independent small parameters (0 < epsilon, delta << 1), and f, g, h are C-r functions, where r is big enough for our purposes. We establish conditions for the existence of compact invariant sets (singular points, periodic and homoclinic orbits) when epsilon, delta > 0. Our main strategy is to consider three time scales which generate three different limit problems. In addition, we prove that double regularization of nonsmooth dynamical systems with self-intersecting switching variety provides a class of three time scale singular perturbation problems.

Formato

673-687

Identificador

http://www.ams.org/journals/qam/2014-72-04/S0033-569X-2014-01360-X/

Quarterly Of Applied Mathematics. Boston: Brown Univ, v. 72, n. 4, p. 673-687, 2014.

0033-569X

http://hdl.handle.net/11449/117698

WOS:000346649200005

Idioma(s)

eng

Publicador

Brown Univ

Relação

Quarterly Of Applied Mathematics

Direitos

closedAccess

Palavras-Chave #Geometric theory #singular perturbations #three time scales #nonsmooth dynamical systems
Tipo

info:eu-repo/semantics/article