943 resultados para Generalized Fractional Integrals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33, 33C60, 44A20

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A16, 26A33, 46E15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Math. Subject Classification: Primary 42B20, 42B25, 42B35

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the calculation of fractional integrals by means of the time delay operator. The study starts by reviewing the memory properties of fractional operators and their relationship with time delay. Based on the time response of the Mittag-Leffler function an approximation of fractional integrals consisting of time delayed samples is proposed. The tuning of the approximation is optimized by means of a genetic algorithm. The results demonstrate the feasibility of the new perspective and the limits of their application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we prove T1 type necessary and sufficient conditions for the boundedness on inhomogeneous Lipschitz spaces of fractional integrals and singular integrals defined on a measure metric space whose measure satisfies a n-dimensional growth. We also show that hypersingular integrals are bounded on these spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years fractionally differenced processes have received a great deal of attention due to its flexibility in financial applications with long memory. This paper considers a class of models generated by Gegenbauer polynomials, incorporating the long memory in stochastic volatility (SV) components in order to develop the General Long Memory SV (GLMSV) model. We examine the statistical properties of the new model, suggest using the spectral likelihood estimation for long memory processes, and investigate the finite sample properties via Monte Carlo experiments. We apply the model to three exchange rate return series. Overall, the results of the out-of-sample forecasts show the adequacy of the new GLMSV model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 26A33, 30C45; Secondary 33A35

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 46F25, 26A33; Secondary: 46G20

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated to 75th birthday of Prof. A.M. Mathai, Mathematical Subject Classification 2010:26A33, 33C10, 33C20, 33C50, 33C60, 26A09

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 33C20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.