Estimating and forecasting generalized fractional Long memory stochastic volatility models


Autoria(s): Peiris, Shelton; Asai, Manabu; McAleer, Michael
Data(s)

2016

Resumo

In recent years fractionally differenced processes have received a great deal of attention due to its flexibility in financial applications with long memory. This paper considers a class of models generated by Gegenbauer polynomials, incorporating the long memory in stochastic volatility (SV) components in order to develop the General Long Memory SV (GLMSV) model. We examine the statistical properties of the new model, suggest using the spectral likelihood estimation for long memory processes, and investigate the finite sample properties via Monte Carlo experiments. We apply the model to three exchange rate return series. Overall, the results of the out-of-sample forecasts show the adequacy of the new GLMSV model.

Formato

application/pdf

Identificador

http://eprints.ucm.es/38110/1/1608.pdf

Idioma(s)

en

Publicador

Facultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)

Relação

http://eprints.ucm.es/38110/

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #Probabilidades #Econometría
Tipo

info:eu-repo/semantics/workingPaper

PeerReviewed