Generalized Fractional Calculus, Special Functions and Integral Transforms: What is the Relation?
Data(s) |
19/10/2012
19/10/2012
2011
|
---|---|
Resumo |
Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата. In this survey we briefly illustrate some of our contributions to the generalizations of the fractional calculus (analysis) as a theory of the operators for integration and differentiation of arbitrary (fractional) order, of the classical special functions and of the integral transforms of Laplace type. It is shown that these three topics of analysis are closely related and mutually induce their origins and developments. Due to the short space, we confine here only to survey the ideas of our recent contributions related to the title. Statements of the numerous results, their proofs, examples and applications can be found in Refs, like: [1]–[2], [5]–[7], [11]–[19]. *2010 Mathematics Subject Classification: 26A33, 33C60, 44A10, 44A40 This paper is supported under Project D ID 02/25/2009: “Integral Transform Methods, Special Functions and Applications”, by the National Science Fund of the Ministry of Education, Youth and Science, Bulgaria. |
Identificador |
Union of Bulgarian Mathematicians, Vol. 40, No 1, (2011), 42p-53p 1313-3330 |
Idioma(s) |
en |
Publicador |
Union of Bulgarian Mathematicians |
Palavras-Chave | #Fractional Integrals and Derivatives #Generalized Hypergeometric Functions #H-Functions #G-Functions #Integral Transforms of Laplace Type |
Tipo |
Article |