Generalized Fractional Evolution Equation


Autoria(s): Da Silva, J. L.; Erraoui, M.; Ouerdiane, H.
Data(s)

29/08/2010

29/08/2010

2007

Resumo

2000 Mathematics Subject Classification: Primary 46F25, 26A33; Secondary: 46G20

In this paper we study the generalized Riemann-Liouville (resp. Caputo) time fractional evolution equation in infinite dimensions. We show that the explicit solution is given as the convolution between the initial condition and a generalized function related to the Mittag-Leffler function. The fundamental solution corresponding to the Riemann-Liouville time fractional evolution equation does not admit a probabilistic representation while for the Caputo time fractional evolution equation it is related to the inverse stable subordinators.

∗ Partially supported by: GRICES, Proco 4.1.5/Maroc; PTDC/MAT/67965/2006; FCT, POCTI-219, FEDER.

Identificador

Fractional Calculus and Applied Analysis, Vol. 10, No 4, (2007), 375p-398p

1311-0454

http://hdl.handle.net/10525/1322

Idioma(s)

en

Publicador

Institute of Mathematics and Informatics Bulgarian Academy of Sciences

Palavras-Chave #Generalized Functions #Convolution Product #Generalized Gross Laplacian #Riemann-Liouville Derivative #Caputo Derivative #46F25 #26A33 #46G20
Tipo

Article