924 resultados para Frequency locked loop


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The atomic force microscope (AFM) introduced the surface investigation with true atomic resolution. In the frequency modulation technique (FM-AFM) both the amplitude and the frequency of oscillation of the micro-cantilever must be kept constant even in the presence of tip-surface interaction forces. For that reason, the proper design of the Phase-Locked Loop (PLL) used in FM-AFM is vital to system performance. Here, the mathematical model of the FM-AFM control system is derived considering high order PLL In addition a method to design stable third-order Phase-Locked Loops is presented. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution of timing signals is an essential factor for the development of digital systems for telecommunication networks, integrated circuits and manufacturing automation. Originally, this distribution was implemented by using the master-slave architecture with a precise master clock generator sending signals to phase-locked loops (PLL) working as slave oscillators. Nowadays, wireless networks with dynamical connectivity and the increase in size and operation frequency of the integrated circuits suggest that the distribution of clock signals could be more efficient if mutually connected architectures were used. Here, mutually connected PLL networks are studied and conditions for synchronous states existence are analytically derived, depending on individual node parameters and network connectivity, considering that the nodes are nonlinear oscillators with nonlinear coupling conditions. An expression for the network synchronisation frequency is obtained. The lock-in range and the transmission error bounds are analysed providing hints to the design of this kind of clock distribution system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase-locked loops (PLLs) are widely used in applications related to control systems and telecommunication networks. Here we show that a single-chain master-slave network of third-order PLLs can exhibit stationary, periodic and chaotic behaviors, when the value of a single parameter is varied. Hopf, period-doubling and saddle-saddle bifurcations are found. Chaos appears in dissipative and non-dissipative conditions. Thus, chaotic behaviors with distinct dynamical features can be generated. A way of encoding binary messages using such a chaos-based communication system is suggested. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PhD activity described in the document is part of the Microsatellite and Microsystem Laboratory of the II Faculty of Engineering, University of Bologna. The main objective is the design and development of a GNSS receiver for the orbit determination of microsatellites in low earth orbit. The development starts from the electronic design and goes up to the implementation of the navigation algorithms, covering all the aspects that are involved in this type of applications. The use of GPS receivers for orbit determination is a consolidated application used in many space missions, but the development of the new GNSS system within few years, such as the European Galileo, the Chinese COMPASS and the Russian modernized GLONASS, proposes new challenges and offers new opportunities to increase the orbit determination performances. The evaluation of improvements coming from the new systems together with the implementation of a receiver that is compatible with at least one of the new systems, are the main activities of the PhD. The activities can be divided in three section: receiver requirements definition and prototype implementation, design and analysis of the GNSS signal tracking algorithms, and design and analysis of the navigation algorithms. The receiver prototype is based on a Virtex FPGA by Xilinx, and includes a PowerPC processor. The architecture follows the software defined radio paradigm, so most of signal processing is performed in software while only what is strictly necessary is done in hardware. The tracking algorithms are implemented as a combination of Phase Locked Loop and Frequency Locked Loop for the carrier, and Delay Locked Loop with variable bandwidth for the code. The navigation algorithm is based on the extended Kalman filter and includes an accurate LEO orbit model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (M. S.)--University of Illinois at Urbana-Champaign.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferometric sensors for slowly varying measurands, such as temperature or pressure, require a long term frequency stability of the source. We describe a system for frequency locking a laser diode to an atomic transition in a hollow cathode lamp using the optogalvanic effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation consists of two independent musical compositions and an article detailing the process of the design and assembly of an electric guitar with particular emphasis on the carefully curated suite of embedded effects.

The first piece, 'Phase Locked Loop and Modulo Games' is scored for electric guitar and a single echo of equal volume less than a beat away. One could think of the piece as a 15 minute canon at the unison at the dotted eighth note (or at times the quarter or triplet-quarter), however the compositional motivation is more about weaving a composite texture between the guitar and its echo that is, while in theory extremely contrapuntal, in actuality is simply a single [superhuman] melodic line.

The second piece, 'The Dogma Loops' picks up a few compositional threads left by ‘Phase Locked Loop’ and weaves them into an entirely new tapestry. 'Phase Locked Loop' is motivated by the creation of a complex musical composite that is for the most part electronically transparent. 'The Dogma Loops' questions that same notion of composite electronic complexity by essentially asking a question: "what are the inputs to an interactive electronic system that create the most complex outputs via the simplest musical means possible?"

'The Dogma Loops' is scored for Electric Guitar (doubling on Ukulele), Violin and Violoncello. All of the principal instruments require an electronic pickup (except the Uke). The work is in three sections played attacca; [Automation Games], [Point of Origin] and [Cloning Vectors].

The third and final component of the document is the article 'Finding Ibrida.' This article details the process of the design and assembly of an electric guitar with integrated effects, while also providing the deeper context (conceptual and technical) which motivated the efforts and informed the challenges to hybridize the various technologies (tubes, transistors, digital effects and a microcontroller subsystem). The project was motivated by a desire for rigorous technical and hands-on engagement with analog signal processing as applied to the electric guitar. ‘Finding Ibrida’ explores sound, some myths and lore of guitar tech and the history of electric guitar distortion and its culture of sonic exploration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A noncoherent vector delay/frequency-locked loop (VDFLL) architecture for GNSS receivers is proposed. A bank of code and frequency discriminators feeds a central extended Kalman filter that estimates the receiver's position and velocity, besides the clock error. The VDFLL architecture performance is compared with the one of the classic scalar receiver, both for scintillation and multipath scenarios, in terms of position errors. We show that the proposed solution is superior to the conventional scalar receivers, which tend to lose lock rapidly, due to the sudden drops of the received signal power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the advantages and drawbacks of a vector delay/frequency-locked loop (VDFLL) architecture regarding the conventional scalar and the vector delay-locked loop (VDLL) architectures for GNSS receivers in harsh scenarios that include ionospheric scintillation, multipath, and high dynamics motion. The VDFLL is constituted by a bank of code and frequency discriminators feeding a central extended Kaiman filter (EKF) that estimates the receiver's position, velocity, and clock bias. Both code and frequency loops are closed vectorially through the EKF. The VDLL closes the code loop vectorially and the phase loops through individual PLLs while the scalar receiver closes both loops by means of individual independent PLLs and DLLs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-coherent vector delay/frequency-locked loop architecture for GNSS receivers is proposed. Two dynamics models are considered: PV (position and velocity) and PVA (position, velocity, and acceleration). In contrast with other vector architectures, the proposed approach does not require the estimation of signals amplitudes. Only coarse estimates of the carrier-to-noise ratios are necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spacecraft move with high speeds and suffer abrupt changes in acceleration. So, an onboard GPS receiver could calculate navigation solutions if the Doppler effect is taken into consideration during the satellite signals acquisition and tracking. Thus, for the receiver subject to such dynamic cope these shifts in the frequency signal, resulting from this effect, it is imperative to adjust its acquisition bandwidth and increase its tracking loop to a higher order. This paper presents the changes in the GPS Orion s software, an open architecture receiver produced by GEC Plessey Semiconductors, nowadays Zarlink, in order to make it able to generate navigation fix for vehicle under high dynamics, especially Low Earth Orbit satellites. GPS Architect development system, sold by the same company, supported the modifications. Furthermore, it presents GPS Monitor Aerospace s characteristics, a computational tool developed for monitoring navigation fix calculated by the GPS receiver, through graphics. Although it was not possible to simulate the software modifications implemented in the receiver in high dynamics, it was observed that the receiver worked in stationary tests, verified also in the new interface. This work also presents the results of GPS Receiver for Aerospace Applications experiment, achieved with the receiver s participation in a suborbital mission, Operation Maracati 2, in December 2010, using a digital second order carrier tracking loop. Despite an incident moments before the launch have hindered the effective navigation of the receiver, it was observed that the experiment worked properly, acquiring new satellites and tracking them during the VSB-30 rocket flight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.