986 resultados para Food additives


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endocrine-disrupting chemicals (EDCs) are capable of interfering with normal hormone homeostasis by acting on several targets and through a wide variety of mechanisms. Unwanted exposure to EDCs can lead to a wide spectrum of adverse health effects, especially when exposure is during critical windows of development. Feed and food are considered to be among the main routes of inadvertent exposure to EDCs, so there is an important need for efficient detection of EDCs in these matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an enormous demand for chemical sensors in many areas and disciplines including chemistry, biology, clinical analysis, environmental science. Chemical sensing refers to the continuous monitoring of the presence of chemical species and is a rapidly developing field of science and technology. They are analytical devices which transform chemical information generating from a reaction of the analyte into an measurable signal. Due to their high selectivity, sensitivity, fast response and low cost, electrochemical and fluorescent sensors have attracted great interest among the researchers in various fields. Development of four electrochemical sensors and three fluorescent sensors for food additives and neurotransmitters are presented in the thesis. Based on the excellent properties of multi walled carbon nanotube (MWCNT), poly (L-cysteine) and gold nanoparticles (AuNP) four voltammetric sensors were developed for various food additives like propyl gallate, allura red and sunset yellow. Nanosized fluorescent probes including gold nanoclusters (AuNCs) and CdS quantum dots (QDs) were used for the fluorescent sensing of butylated hydroxyanisole, dopamine and norepinephrine. A total of seven sensors including four electrochemical sensors and three fluorescence sensors have been developed for food additives and neurotransmitters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fewer and fewer Americans produce their own food, yet consumers demand and enjoy a food supply that is flavorful, nutritious, convenient, readily available, safe, abundant, varied, and reasonably priced. Food additives and technology make that possible. This research publication covers what food additive are, why are they used, how they are regulated, and what can individuals do when they are concerned about food additives. It also contains a guide to food additives table.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the erosive potential of orange juice modified with food-approved additives: 0.4 g/l of calcium (Ca) from calcium lactate pentahydrate, 0.2 g/l of linear sodium polyphosphate (LPP) or their combination (Ca+LPP) were added to a commercially available orange juice (negative control, C-). A commercially available calcium-modified orange juice (1.6 g/l of calcium) was the positive control (C+). These juices were tested using a short-term erosion in situ model, consisting of a five-phase, single-blind crossover clinical trial involving 10 subjects. In each phase, subjects inserted custom-made palatal appliances containing 8 bovine enamel specimens in the mouth and performed erosive challenges for a total of 0 (control), 10, 20, and 30 min. Two specimens were randomly removed from the appliances after each challenge period. Enamel surface microhardness was measured before and after the clinical phase and the percentage of surface microhardness change (%SMC) was determined. Before the procedures, in each phase, the subjects performed a taste test, where the juice assigned to that phase was blindly compared to C-. Overall, C+ showed the lowest %SMC, being the least erosive solution (p < 0.05), followed by Ca+LPP and Ca, which did not differ from each other (p > 0.05). LPP and C- were the most erosive solutions (p <0.05). Taste differences were higher for C+ (5/10 subjects) and Ca (4/10 subjects), but detectable in all groups, including C- (2/10 subjects). Calcium reduced the erosive potential of the orange juice, while no protection was observed for LPP. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"B-20531."--Prelim. p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The burden of foodborne disease has large economic and social consequences worldwide. Despite strict regulations, a number of pathogens persist within the food environment, which is greatly contributed to by a build-up of resistance mechanisms and also through the formation of biofilms. Biofilms have been shown to be highly resistant to a number of antimicrobials and can be extremely difficult to remove once they are established. In parallel, the growing concern of consumers regarding the use of chemically derived antimicrobials within food has led to a drive toward more natural products. As a consequence, the use of naturally derived antimicrobials has become of particular interest. In this study we investigated the efficacy of nisin A and its bioengineered derivative M21A in combination with food grade additives to treat biofilms of a representative foodborne disease isolate of Listeria monocytogenes. Investigations revealed the enhanced antimicrobial effects, in liquid culture, of M21A in combination with citric acid or cinnamaldehyde over its wild type nisin A counterpart. Subsequently, an investigation was conducted into the effects of these combinations on an established biofilm of the same strain. Nisin M21A (0.1 μg/ml) alone or in combination with cinnamaldehyde (35 μg/ml) or citric acid (175 μg/ml) performed significantly better than combinations involving nisin A. All combinations of M21A with either citric acid or cinnamaldehyde eradicated the L. monocytogenes biofilm (in relation to a non-biofilm control). We conclude that M21A in combination with available food additives could further enhance the antimicrobial treatment of biofilms within the food industry, simply by substituting nisin A with M21A in current commercial products such as Nisaplin® (Danisco, DuPont).