992 resultados para Fictionalisation de soi
Resumo:
Le présent mémoire porte sur la réécriture par Vickie Gendreau, auteure québécoise contemporaine, de deux genres funèbres, le testament littéraire et le tombeau poétique. Dans ses deux récits, Testament et Drama Queens, Gendreau met en scène des narratrices qui s'apprêtent à mourir des suites d'une tumeur au cerveau, ce qui soulève plusieurs questions : de quelle manière tisse-t-elle des rapports intertextuels avec les genres évoqués plus haut ? Comment l'appropriation des genres funèbres permet-elle de vaincre l'angoisse associée à la mort proclamée par les médecins ? Comment penser l'écriture du corps et la fictionalisation de soi à l'aune de deux genres datant de l'époque médiévale ou de la Renaissance ? Dans le premier chapitre, nous nous attardons à la construction par Gendreau du testament littéraire dans sa forme médiévale dans Testament et à la reprise dans Drama Queens d'enjeux testamentaires ; l'héritage, la filiation et la transmission. La réécriture permet l'incorporation dans le récit de l'autodérision et de la mise en scène du devenir-cadavre. Dans le second chapitre, nous explorons le tombeau poétique, tant celui de la Renaissance que celui des poètes modernes. Ce faisant, nous abordons les discours de commémoration du défunt et surtout l'appropriation de la commémoration par les deux narratrices, et ultimement par Vickie Gendreau.
Resumo:
Le présent mémoire porte sur la réécriture par Vickie Gendreau, auteure québécoise contemporaine, de deux genres funèbres, le testament littéraire et le tombeau poétique. Dans ses deux récits, Testament et Drama Queens, Gendreau met en scène des narratrices qui s'apprêtent à mourir des suites d'une tumeur au cerveau, ce qui soulève plusieurs questions : de quelle manière tisse-t-elle des rapports intertextuels avec les genres évoqués plus haut ? Comment l'appropriation des genres funèbres permet-elle de vaincre l'angoisse associée à la mort proclamée par les médecins ? Comment penser l'écriture du corps et la fictionalisation de soi à l'aune de deux genres datant de l'époque médiévale ou de la Renaissance ? Dans le premier chapitre, nous nous attardons à la construction par Gendreau du testament littéraire dans sa forme médiévale dans Testament et à la reprise dans Drama Queens d'enjeux testamentaires ; l'héritage, la filiation et la transmission. La réécriture permet l'incorporation dans le récit de l'autodérision et de la mise en scène du devenir-cadavre. Dans le second chapitre, nous explorons le tombeau poétique, tant celui de la Renaissance que celui des poètes modernes. Ce faisant, nous abordons les discours de commémoration du défunt et surtout l'appropriation de la commémoration par les deux narratrices, et ultimement par Vickie Gendreau.
Resumo:
Embedded many-core architectures contain dozens to hundreds of CPU cores that are connected via a highly scalable NoC interconnect. Our Multiprocessor-System-on-Chip CoreVAMPSoC combines the advantages of tightly coupled bus-based communication with the scalability of NoC approaches by adding a CPU cluster as an additional level of hierarchy. In this work, we analyze different cluster interconnect implementations with 8 to 32 CPUs and compare them in terms of resource requirements and performance to hierarchical NoCs approaches. Using 28nm FD-SOI technology the area requirement for 32 CPUs and AXI crossbar is 5.59mm2 including 23.61% for the interconnect at a clock frequency of 830 MHz. In comparison, a hierarchical MPSoC with 4 CPU cluster and 8 CPUs in each cluster requires only 4.83mm2 including 11.61% for the interconnect. To evaluate the performance, we use a compiler for streaming applications to map programs to the different MPSoC configurations. We use this approach for a design-space exploration to find the most efficient architecture and partitioning for an application.
Resumo:
This study aims to examine the operations and significance of the Klemetti Institute (Klemetti-Opisto) as a developer of Finnish music culture from 1953 to 1968 during the term of office of the Institute s founder and first director, Arvo Vainio. The Klemetti Institute was originally established as a choir institute, but soon expanded to offer a wide range of music courses. In addition to providing courses for choir leaders and singers, the Institute began its orchestral activities as early as the mid-1950s. Other courses included ear training seminars as well as courses for young people s music instructors and in playing the kantele (a Finnish string instrument) and solo singing. More than 20 types of courses were offered over the 16-year period. The Klemetti Institute s courses were incorporated into the folk high school courses offered by the Orivesi Institute (Oriveden Opisto) and were organised during the summer months of June and July. In addition to funding based on the Folk High School Act, financial assistance was obtained from various foundations and funds, such as the Wihuri Foundation. This study is linked to the context of historical research. I examine the Klemetti Institute s operations chronologically, classifying instruction into different course types, and analyse concert activities primarily in the section on the Institute s student union. The source material includes the Klemetti Institute archives, which consist of Arvo Vainio s correspondence, student applications, register books and cards, journals and student lists, course albums and nearly all issues of the Klemettiläinen bulletin. In addition, I have used focused interviews and essays to obtain extensive data from students and teachers. I concentrate on primary school teachers, who accounted for the majority of course participants. A total of more than 2,300 people participated in the courses, nearly half of whom took courses during at least two summers. Primary school teachers accounted for 50% to 70% of the participants in most courses and constituted an even larger share of participants in some courses, such as the music instructor course. The Klemetti Institute contributed to the expansion throughout Finland of a new ideal for choral tone. This involved delicate singing which strives for tonal purity and expressiveness. Chamber choirs had been virtually unheard of in Finland, but the Klemetti Institute Chamber Choir popularised them. Chamber choirs are characterised by an extensive singing repertoire ranging from the Middle Ages to the present. As the name suggests, chamber choirs were originally rather small mixed choirs. Delicate singing meant the avoidance of extensive vibrato techniques and strong, heavy forte sounds, which had previously been typical of Finnish choirs. Those opposing and shunning this new manner of singing called it ghost singing . The Klemetti Institute s teachers included Finland s most prominent pedagogues and artists. As the focused essays, or reminiscences as I call them, show, their significance for the students was central. I examine extensively the Klemetti Institute s enthusiastic atmosphere, which during the early years was characterised by what some writers described as a hunger for music . In addition to distributing a new tonal ideal and choir repertoire, the Klemetti Institute also distributed new methods of music education, thus affecting the music teaching of Finnish primary schools, in particular. The Orff approach, which included various instruments, became well known, although some of Orff s ideas, such as improvisation and physical exercise, were initially unfamiliar. More important than the Orff approach was the in-depth teaching at the Klemetti Institute of the Hungarian ear training method known as the Kodály method. Many course participants were among those launching specialist music classes in schools, and the method became the foundation for music teaching in many such schools. The Klemetti Institute was also a pioneer in organising orchestra camps for young people. The Klemetti Institute promoted Finnish music culture and played an important role in the continuing music education of primary school teachers. Keywords: adult education, Grundtvigian philosophy, popular enlightenment, Klemetti Institute, Kodály method, choir singing, choir conducting, music history, music education, music culture, music camp, Orff approach, Orff-Schulwerk, Orivesi Institute, instrument teaching, free popular education, communality, solo singing, voice production
Resumo:
In this paper, a simple but accurate semi analytical charge sheet model is presented for threshold voltage of accumulation mode polycrystalline silicon on insulator (PSOI) MOSFETs. In this model, we define the threshold voltage (V-T) of the polysilicon accumulation mode MOSFET as the gate voltage required to raise the surface potential (phi(s)) to a value phi(sT) necessary to overcome the charge trapping in the grain boundary and to create channel accumulation charge that is equal to the channel accumulation charge available in the case of single crystal silicon accumulation mode MOSFET at that phi(sT). The correctness of the model is demonstrated by comparing the theoretically estimated values of threshold voltage with the experimentally measured threshold voltages on the accumulation mode PSOI MOSFETs fabricated in the laboratory using LPCVD polysilicon layers doped with boron to achieve dopant densities in the range 3.3 x 10(-15)-5 x 10(17)/cm(3). Further, it is shown that the threshold voltage values of accumulation mode PSOI MOSFETs predicted by the present model match very closely with the experimental results, better than those obtained with the models previously reported in the literature. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report the simulation and analytical results obtained for homogenous or bulk sensing of protein on Siliconon- insulator strip waveguide based microring resonator. The radii of the rings considered are 5 μm and 20 μm; the waveguide dimensions are 300 × 300 nm. A gap of (i) 200 nm and (ii) 300 nm exists between the ring and the bus waveguide. The biomaterial is uniformly distributed over a thickness which exceeds the evanescent field penetration depth of 150 nm. The sensitivities of the resonators are 32.5 nm/RIU and 17.5 nm/RIU (RIU - Refractive index unit) respectively.
Resumo:
Stress induced by Focused Ion Beam (FIB) milling of cantilevers fabricated on silicon-on-insulator (SOI) wafer has been studied. Milling induces stress gradients ranging from -10MPa/μm to -120MPa/μm, depending on the location of cantilevers from the point of milling. Simulations were done to estimate the stress in the milled cantilevers.
Resumo:
We report on the effect of thin silicon nitride (Si3N4) induced tensile stress on the structural release of 200nm thick SOI beam, in the surface micro-machining process. A thin (20nm / 100nm) LPCVD grown Si3N4 is shown to significantly enhance the yield of released beam in wet release technique. This is especially prominent with increase in beam length, where the beams have higher tendency for stiction. We attribute this yield enhancement to the nitride induced tensile stress, as verified by buckling tendency and resonance frequency data obtained from optical profilometry and laser doppler vibrometry.
Resumo:
A power LDMOS on partial silicon on insulator (PSOI) with a variable low-κ dielectric (VLKD) buried layer and a buried p (BP) layer is proposed (VLKD BPSOI). At a low κ value, the electric field strength in the buried dielectric (EI) is enhanced, and a Si window makes the substrate share the vertical voltage drop, leading to a high vertical breakdown voltage (BV). Moreover, three interface field peaks are introduced by the BP, the Si window, and the VLKD, which modulate the fields in the SOI layer, the VLKD layer, and the substrate; consequently, a high BV is obtained. Furthermore, the BP reduces the specific on-resistance (Ron), and the Si window alleviates the self-heating effect (SHE). The BV for VLKD BPSOI is enhanced by 34.5%, and Ron is decreased by 26.6%, compared with those for the conventional PSOI, and VLKD BPSOI also maintains a low SHE. © 2006 IEEE.
Resumo:
3D thermo-electro-mechanical device simulations are presented of a novel fully CMOS-compatible MOSFET gas sensor operating in a SOI membrane. A comprehensive stress analysis of a Si-SiO2-based multilayer membrane has been performed to ensure a high degree of mechanical reliability at a high operating temperature (e.g. up to 400°C). Moreover, optimisation of the layout dimensions of the SOI membrane, in particular the aspect ratio between the membrane length and membrane thickness, has been carried out to find the best trade-off between minimal device power consumption and acceptable mechanical stress.
Resumo:
This paper describes coupled-effect simulations of smart micro gas-sensors based on standard BiCMOS technology. The smart sensor features very low power consumption, high sensitivity and potential low fabrication cost achieved through full CMOS integration. For the first time the micro heaters are made of active CMOS elements (i.e. MOSFET transistors) and embedded in a thin SOI membrane consisting of Si and SiO2 thin layers. Micro gas-sensors such as chemoresistive, microcalorimeteric and Pd/polymer gate FET sensors can be made using this technology. Full numerical analyses including 3D electro-thermo-mechanical simulations, in particular stress and deflection studies on the SOI membranes are presented. The transducer circuit design and the post-CMOS fabrication process, which includes single sided back-etching, are also reported.
Resumo:
This paper describes a new generation of integrated solid-state gas-sensors embedded in SOI micro-hotplates. The micro-hotplates lie on a SOI membrane and consist of MOSFET heaters that elevate the operating temperature, through self-heating, of a gas sensitive material. These sensors are fully compatible with SOI CMOS or BiCMOS technologies, offer ultra-low power consumption (under 100 mW), high sensitivity, low noise, low unit cost, reproducibility and reliability through the use of on-chip integration. In addition, the new integrated sensors offer a nearly uniform temperature distribution over the active area at its operating temperatures at up to about 300-350°C. This makes SOI-based gas-sensing devices particularly attractive for use in handheld battery-operated gas monitors. This paper reports on the design of a chemo-resistive gas sensor and proposes for the first time an intelligent SOI membrane microcalorimeter using active micro-FET heaters and temperature sensors. A comprehensive set of numerical and analogue simulations is also presented including complex 2D and 3D electro-thermal numerical analyses. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper describes multiple field-coupled simulations and device characterization of fully CMOS-MEMS-compatible smart gas sensors. The sensor structure is designated for gas/vapour detection at high temperatures (>300 °C) with low power consumption, high sensitivity and competent mechanic robustness employing the silicon-on-insulator (SOI) wafer technology, CMOS process and micromachining techniques. The smart gas sensor features micro-heaters using p-type MOSFETs or polysilicon resistors and differentially transducing circuits for in situ temperature measurement. Physical models and 3D electro-thermo-mechanical simulations of the SOI micro-hotplate induced by Joule, self-heating, mechanic stress and piezoresistive effects are provided. The electro-thermal effect initiates and thus affects electronic and mechanical characteristics of the sensor devices at high temperatures. Experiments on variation and characterization of micro-heater resistance, power consumption, thermal imaging, deformation interferometry and dynamic thermal response of the SOI micro-hotplate have been presented and discussed. The full integration of the smart gas sensor with automatically temperature-reading ICs demonstrates the lowest power consumption of 57 mW at 300 °C and fast thermal response of 10 ms. © 2008 IOP Publishing Ltd.