911 resultados para Existence and multiplicity of solutions
Existence and multiplicity of solutions for a prescribed mean-curvature problem with critical growth
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Some superlinear fourth order elliptic equations are considered. A family of solutions is proved to exist and to concentrate at a point in the limit. The proof relies on variational methods and makes use of a weak version of the Ambrosetti-Rabinowitz condition. The existence and concentration of solutions are related to a suitable truncated equation. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.
Resumo:
We consider the existence and uniqueness problem for partial differential-functional equations of the first order with the initial condition for which the right-hand side depends on the derivative of unknown function with deviating argument.
Resumo:
The aim of the article is to present a unified approach to the existence, uniqueness and regularity of solutions to problems belonging to a class of second order in time semilinear partial differential equations in Banach spaces. Our results are applied next to a number of examples appearing in literature, which fall into the class of strongly damped semilinear wave equations. The present work essentially extends the results on the existence and regularity of solutions to such problems. Previously, these problems have been considered mostly within the Hilbert space setting and with the main part operators being selfadjoint. In this article we present a more general approach, involving sectorial operators in reflexive Banach spaces. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This paper proves the existence and uniqueness of a fixed-point for local contractions without assuming the family of contraction coefficients to be uniformly bounded away from 1. More importantly it shows how this fixed-point result can apply to study existence and uniqueness of solutions to some recursive equations that arise in economic dynamics.
Resumo:
In this study we investigate the existence, uniqueness and asymptotic stability of solutions of a class of nonlinear integral equations which are representations for some time dependent non- linear partial differential equations. Sufficient conditions are established which allow one to infer the stability of the nonlinear equations from the stability of the linearized equations. Improved estimates of the domain of stability are obtained using a Liapunov Functional approach. These results are applied to some nonlinear partial differential equations governing the behavior of nonlinear continuous dynamical systems.
Resumo:
[EN] The purpose of this paper is to investigate the existence and uniqueness of positive solutions for the following fractional boundary value problem D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 1 ) = u ′ ( 0 ) = 0 , where 2 < α ≤ 3 and D 0 + α is the Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem in partially ordered metric spaces. The autonomous case of this problem was studied in the paper [Zhao et al., Abs. Appl. Anal., to appear], but in Zhao et al. (to appear), the question of uniqueness of the solution is not treated. We also present some examples where we compare our results with the ones obtained in Zhao et al. (to appear). 2010 Mathematics Subject Classification: 34B15
Resumo:
[EN] We establish the existence and uniqueness of a positive and nondecreasing solution to a singular boundary value problem of a class of nonlinear fractional differential equation. Our analysis relies on a fixed point theorem in partially ordered sets.
Resumo:
The goal of this paper is to study the multiplicity of positive solutions of a class of quasilinear elliptic equations. Based on the mountain pass theorems and sub-and supersolutions argument for p-Laplacian operators, under suitable conditions on nonlinearity f (x, s), we show the following problem: -Delta(p)u = lambda f(x,u) in Omega, u/(partial derivative Omega) = 0, where Omega is a bounded open subset of R-N, N >= 2, with smooth boundary, lambda is a positive parameter and Delta(p) is the p-Laplacian operator with p > 1, possesses at least two positive solutions for large lambda.
Resumo:
In this thesis, we study the existence and multiplicity of solutions of the following class of Schr odinger-Poisson systems: u + u + l(x) u = (x; u) in R3; = l(x)u2 in R3; where l 2 L2(R3) or l 2 L1(R3). And we consider that the nonlinearity satis es the following three kinds of cases: (i) a subcritical exponent with (x; u) = k(x)jujp 2u + h(x)u (4 p < 2 ) under an inde nite case; (ii) a general inde nite nonlinearity with (x; u) = k(x)g(u) + h(x)u; (iii) a critical growth exponent with (x; u) = k(x)juj2 2u + h(x)jujq 2u (2 q < 2 ). It is worth mentioning that the thesis contains three main innovations except overcoming several di culties, which are generated by the systems themselves. First, as an unknown referee said in his report, we are the rst authors concerning the existence of multiple positive solutions for Schr odinger- Poisson systems with an inde nite nonlinearity. Second, we nd an interesting phenomenon in Chapter 2 and Chapter 3 that we do not need the condition R R3 k(x)ep 1dx < 0 with an inde nite noncoercive case, where e1 is the rst eigenfunction of +id in H1(R3) with weight function h. A similar condition has been shown to be a su cient and necessary condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity for a bounded domain (see e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), or to be a su cient condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity in RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Moreover, the process used in this case can be applied to study other aspects of the Schr odinger-Poisson systems and it gives a way to study the Kirchho system and quasilinear Schr odinger system. Finally, to get sign changing solutions in Chapter 5, we follow the spirit of Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, but the procedure is simpler than that they have proposed in their paper.
Resumo:
Neural networks and wavelet transform have been recently seen as attractive tools for developing eficient solutions for many real world problems in function approximation. Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. So, mathematical model is a very important tool to guarantee the development of the neural network area. In this article we will introduce one series of mathematical demonstrations that guarantee the wavelets properties for the PPS functions. As application, we will show the use of PPS-wavelets in pattern recognition problems of handwritten digit through function approximation techniques.
On bifurcation and symmetry of solutions of symmetric nonlinear equations with odd-harmonic forcings
Resumo:
In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.