Multiplicity results for some classes of Schrödinger-Poisson systems


Autoria(s): Lirong Huang
Contribuinte(s)

Rocha, Eugénio Alexandre Miguel

Data(s)

21/11/2014

21/11/2014

2014

Resumo

In this thesis, we study the existence and multiplicity of solutions of the following class of Schr odinger-Poisson systems: u + u + l(x) u = (x; u) in R3; = l(x)u2 in R3; where l 2 L2(R3) or l 2 L1(R3). And we consider that the nonlinearity satis es the following three kinds of cases: (i) a subcritical exponent with (x; u) = k(x)jujp 2u + h(x)u (4 p < 2 ) under an inde nite case; (ii) a general inde nite nonlinearity with (x; u) = k(x)g(u) + h(x)u; (iii) a critical growth exponent with (x; u) = k(x)juj2 2u + h(x)jujq 2u (2 q < 2 ). It is worth mentioning that the thesis contains three main innovations except overcoming several di culties, which are generated by the systems themselves. First, as an unknown referee said in his report, we are the rst authors concerning the existence of multiple positive solutions for Schr odinger- Poisson systems with an inde nite nonlinearity. Second, we nd an interesting phenomenon in Chapter 2 and Chapter 3 that we do not need the condition R R3 k(x)ep 1dx < 0 with an inde nite noncoercive case, where e1 is the rst eigenfunction of +id in H1(R3) with weight function h. A similar condition has been shown to be a su cient and necessary condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity for a bounded domain (see e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), or to be a su cient condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity in RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Moreover, the process used in this case can be applied to study other aspects of the Schr odinger-Poisson systems and it gives a way to study the Kirchho system and quasilinear Schr odinger system. Finally, to get sign changing solutions in Chapter 5, we follow the spirit of Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, but the procedure is simpler than that they have proposed in their paper.

Nesta tese, estudamos a existência e a multiplicidade de soluções da seguinte classe de sistemas denominada de Schr odinger-Poisson: u + u + l(x) u = (x; u) in R3; = l(x)u2 in R3; onde l 2 L2(R3) ou l 2 L1(R3). Consideram-se não-linearidades que satisfazem um dos seguintes casos: (i) potências que envolvem um expoente sub-cr tico, da forma (x; u) = k(x)jujp 2u + h(x)u, (4 p < 2 ), sendo k uma função com sinal indefinido e h uma função positiva; (ii) caso geral de uma não-linearidade indefi nida, da forma (x; u) = k(x)g(u) + h(x)u, sendo k uma função com sinal indefinido e h uma função positiva; (iii) potências que envolvem o expoente crí tico, da forma (x; u) = k(x)juj2 2u + h(x)jujq 2u (2 q < 2 ). Convém salientar que esta tese tem três principais inovações, as quais ultrapassam dificuldades geradas pela natureza dos problemas estudados. Primeiro, como um relator anónimo referiu, este é o primeiro trabalho em que se trata a existência de várias soluções de sistemas de Schrödinger- Poisson com não-linearidade indefinida. Segundo, neste estudo encontrou-se um fen ómeno interessante, ver Capítulos 2 e 3, nomeadamente, não ser necess ária a condição R3 k(x)ep 1dx < 0 no caso indefinido e não-coercivo, sendo e1 a função associada ao primeiro valor próprio de + id em H1(R3) com peso h. Note-se que foi demonstrado que uma condi cão semelhante e condição necessária e suficiente na existência de solu cões positivas para equações elíticas semilineares com não-linearidades indefinidas em domínios limitados (ver e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), ou ser uma condição suficiente na existência de soluções positivas para equações elíticas semilineares com não-linearidades indefinidas em RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Adicionalmente, o método utilizado pode ser utilizado para estudar outros aspetos dos sistemas de Schrodinger-Poisson, permite também estudar sistemas de Kirchho e sistemas de Schrodinger quasilineares. Por m, para obter soluções com mudança de sinal no Cap. 5, segue se a ideia de Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, mas o método utilizado é uma versão simplificada do método apresentado no artigo referido.

Doutoramento conjunto em Matemática - Matemática e Aplicações (PDMA)

Identificador

http://hdl.handle.net/10773/12867

101422920

Idioma(s)

eng

Publicador

Universidade de Aveiro

Relação

FCT - SFRH/BD/51162/2010

Direitos

openAccess

Palavras-Chave #Matemática #Equação de Schrödinger #Equação de Poisson #Sistemas não-lineares #Non-autonomous Schr odinger-Poisson systems #Variational methods #Existence and multiplicity of solutions #Positive and sign changing solutions
Tipo

doctoralThesis