Existence and concentration of solutions for a class of biharmonic equations


Autoria(s): Pimenta, Marcos T. O.; Soares, Sérgio Henrique Monari
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

31/10/2013

31/10/2013

02/08/2013

Resumo

Some superlinear fourth order elliptic equations are considered. A family of solutions is proved to exist and to concentrate at a point in the limit. The proof relies on variational methods and makes use of a weak version of the Ambrosetti-Rabinowitz condition. The existence and concentration of solutions are related to a suitable truncated equation. (C) 2012 Elsevier Inc. All rights reserved.

CNPq (Brazil)

Identificador

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, SAN DIEGO, v. 390, n. 1, pp. 274-289, 37043, 2012

0022-247X

http://www.producao.usp.br/handle/BDPI/37019

10.1016/j.jmaa.2012.01.039

http://dx.doi.org/10.1016/j.jmaa.2012.01.039

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

SAN DIEGO

Relação

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #VARIATIONAL METHODS #BIHARMONIC EQUATIONS #NONTRIVIAL SOLUTIONS #NONLINEAR SCHRODINGER-EQUATIONS #CRITICAL EXPONENTIAL-GROWTH #ELLIPTIC PROBLEMS #R-N #POSITIVE SOLUTIONS #NODAL SOLUTIONS #MULTIPLICITY #MATHEMATICS, APPLIED #MATHEMATICS
Tipo

article

original article

publishedVersion