849 resultados para Excipients for tablets
Resumo:
Captopril (CAP) was the first commercially available angiotensine-converting enzyme (ACE) inhibitor. In the anti-hypertensive therapy is considered the selected drug has to be therapeutically effective together with reduced toxicity. CAP is an antihypertensive drug currently being administered in tablet form. In order to investigate the possible interactions between CAP and excipients in tablets formulations, differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis completed by X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FTIR) were used for compatibility studies. A possible drug-excipient interaction was observed with magnesium stearate by DSC technique.
Resumo:
The present study utilized the thermogravimetry (TG) and optical emission spectroscopy with inductively coupled plasma - ICP / OES to determine the calcium content in tablets of carbonate, citrate and calcium lactate used in the treatment of osteoporosis. The samples were characterized by IR, SEM, TG / DTG, DTA, DSC and XRD. The thermal analysis evaluated the thermal stability and physical-chemical events and showed that the excipients influence the decomposition of active ingredients. The results of thermogravimetry indicated that the decomposition temperature of the active CaCO3 (T = 630.2 °C) is lower compared to that obtained in samples of the tablets (633.4 to 655.2 °C) except for sample AM 2 (Ti = 613.8 oC). In 500.0 °C in the samples of citrate and calcium lactate, as well as their respective active principles had already been formed calcium carbonate. The use of N2 atmosphere resulted in shifting the initial and final temperature related to the decomposition of CaCO3. In the DTA and DSC curves were observed endo and exothermic events for the samples of tablets and active ingredients studied. The infrared spectra identified the main functional groups in all samples of active ingredients, excipients and tablets studied, such as symmetric and asymmetric stretches of the groups OH, CH, C = O. Analysis by X-ray diffraction showed that all samples are crystalline and that the final residue showed peaks indicative of the presence of calcium hydroxide by the reaction of calcium oxide with moisture of the air. Although the samples AM 1, AM 2, AM 3 and AM 6 in their formulations have TiO2 and SiO2 peaks were not observed in X-ray diffractograms of these compounds. The results obtained by TGA to determine the calcium content of the drugs studied were satisfactory when compared with those obtained by ICP-OES. In the AM 1 tablet was obtained the content of 35.37% and 32.62% for TG by ICP-OES, at 6 AM a percentage of 17.77% and 16.82% and for AM 7 results obtained were 8.93% for both techniques, showing that the thermogravimetry can be used to determine the percentage of calcium in tablets. The technique offers speed, economy in the use of samples and procedures eliminating the use of acid reagents in the process of the sample and efficiency results.
Resumo:
The applicability of a residue of manioc (Manihot esculenta Granz) from industrial processing as a direct compression excipient was investigated in comparison with microcrystalline cellulose (Avicel® PH 101). Physical characteristics of the powders like bulk and tap densities, particle size, flow properties (flow rate, index of compressibility and angle of repose) and agglutination were evaluated. The residue had poor performance as excipient for direct compression. However, it showed better disintegration properties than Avicel. The possibility of its use as disintegrant agent will be confirmed on future studies.
Resumo:
Despite recent Success, many fast-disintegrating tablets (FDTs) still face problems of low mechanical strength, poor mouth-feel and higher disintegration times. This Study aimed to optimise FDTS using a progressive three-stage approach. A series of hardness, fracturability and disintegration time tests were performed on the formulations at each stage. During Stage 1, tablets were prepared in concentrations between 2% and 5% w/w, and were formulated at each concentration as single and combination bloom strength gelatin (BSG) using 75 and 225 BSGs. Analysis revealed that both hardness and disintegration time increased with an increase in gelatin concentration. A combination (5% gelatin) FDT comprising a 50:50 ratio of 75:225 BSGs (hardness: 13.7 +/- 0.9 N and disintegration time: 24.1 +/- 0.6 s) was judged the most ideal, and was carried forward to Stage II: the addition of the saccharides sorbitol, mannitol and sucrose in concentrations between 10% and 80% w/w. The best properties were exhibited by mannitol-containing formulations (50%-hardness: 30.9 +/- 2.8 N and disintegration time: 13.3 +/- 2.1 s), which were carried forward to the next stage: the addition of viscosity-modifying polymers to improve mouth-feel and aid pre-gastric retention. Addition of carbopol 974P-NF resulted in the enhancement of viscosity with a compromise of the hardness of the tablet, whereas Pluronic F127 (6%) showed an increase in disintegration time and viscosity with retention of mechanical propel-ties. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Orally disintegrating tablets (ODTs) have emerged as one of the novel solid oral dosage forms with a potential to deliver a wide range of drug candidates to both paediatric and geriatric patient populations. Of the plethora of available technologies, compression of excipients offers a cost-effective and translatable methodology for the manufacture of ODTs. Areas covered: The review is a modest endeavour from the authors to assemble literature published over the last couple of decades on formulation development of compressed ODT. It describes the main ODT excipients used since the introduction of this dosage form in the 1990s and explores the switch from cellulose-based excipients towards sugar/polyols. Furthermore, it unfolds the key properties of ODT fillers, binders and disintegrants with an emphasis on their advantages and drawbacks. The review also provides a critical assessment of the various strategies employed for performance enhancement of compressed ODT with a focus on the underlying mechanisms for fast disintegration and acceptable mechanical strength. Expert opinion: Recent increase in the total number of compression-based technologies for ODT development promises to reduce the manufacturing cost of this dosage form in the future. However, some of the developed methods may affect the stability of tablets due to susceptibility to moisture, collapse of pores or the generation of less stable polymorphs which require rigorous testing prior to commercialization. © 2013 Informa UK, Ltd.
Resumo:
Raman spectroscopy with far-red excitation has been investigated as a simple and rapid technique for composition profiling of seized ecstasy (MDMA, N-methyl-3,4-methylenedioxyamphetamine) tablets. The spectra obtained are rich in vibrational bands and allow the active drug and excipient used to bulk the tablets to be identified. Relative band heights can be used to determine drug/excipient ratios and the degree of hydration of the drug while the fact that 50 tablets per hour can be analysed allows large numbers of spectra to be recorded. The ability of Raman spectroscopy to distinguish between ecstasy tablets on the basis of their chemical composition is illustrated here by a sample set of 400 tablets taken from a large seizure of > 50000 tablets that were found in eight large bags. The tablets are all similar in appearance and carry the same logo. Conventional analysis by GC-MS showed they contained MDMA. Initial Raman studies of samples from each of the eight bags showed that despite some tablet-to-tablet variation within each bag the contents could be classified on the basis of the excipients used. The tablets in five of the bags were sorbitol-based, two were cellulose-based and one bag contained tablets with a glucose excipient. More extensive analysis of 50 tablets from each of a representative series of sample bags gave distribution profiles that showed the contents of each bag were approximately normally distributed about a mean value, rather than being mixtures of several discrete types. Two of the sorbitol-containing sample sets were indistinguishable while a third was similar but not identical to these, in that it contained the same excipient and MDMA with the same degree of hydration but had a slightly different MDMA/sorbitol ratio. The cellulose-based samples were badly manufactured and showed considerable tablet-to-tablet variation in their drug/excipient ratio while the glucose-based tablets had a tight distribution in their drug/excipient ratios. The degree of hydration in the MDMA feedstocks used to manufacture the cellulose-, glucose- and sorbitol-based tablets were all different from each other. This study, because it centres on a single seizure of physically similar tablets with the same active drug, highlights the fact that simple physical descriptions coupled with active drug content do not in themselves fully characterize the nature of the seized materials. There is considerable variation in the composition of the tablets within this single seizure and the fact that this variation can be detected from Raman spectra demonstrates that the potential benefits of obtaining highly detailed spectra can indeed translate into information that is not readily available from other methods but would be useful for tracing of drug distribution networks.
Resumo:
Raman spectroscopy with far-red excitation has been used to study seized, tableted samples of MDMA (N-methyl-3,4-methylenedioxyamphetamine) and related compounds (MDA, MDEA, MBDB, 2C-B and amphetamine sulfate), as well as pure standards of these drugs. We have found that by using far-red (785 nm) excitation the level of fluorescence background even in untreated seized samples is sufficiently low that there is little difficulty in obtaining good quality data with moderate 2 min data accumulation times. The spectra can be used to distinguish between even chemically-similar substances, such as the geometrical isomers MDEA and MBDB, and between different polymorphic/hydrated forms of the same drug. Moreover, these differences can be found even in directly recorded spectra of seized samples which have been bulked with other materials, giving a rapid and non-destructive method for drug identification. The spectra can be processed to give unambiguous identification of both drug and excipients (even when more than one compound has been used as the bulking agent) and the relative intensities of drug and excipient bands can be used for quantitative or at least semi-quantitative analysis. Finally, the simple nature of the measurements lends itself to automatic sample handling so that sample throughputs of 20 samples per hour can be achieved with no real difficulty.
Resumo:
L’objectif de ce projet était de développer une formulation liquisolide (LS) de clozapine ayant des propriétés de dissolution améliorées et évaluer sa stabilité et ainsi que sa robustesse à la modification d’excipients. Le propylène glycol (PG), la cellulose microcrystalline (MCC) et le glycolate d’amidon sodique (SSG) ont été utilisés respectivement en tant que véhicule liquide non volatile, agent de masse et agent désintégrant pour la préparation de comprimés LS. Le dioxyde de silicium colloïdal (CSD), le silicate de calcium (CS) et l'aluminométasilicate de magnésium (MAMS) ont été choisis comme agents d’enrobage sec. La caractérisation complète des mélanges et des comprimés a été effectuée. Le taux de libération des comprimés LS était statistiquement supérieur à celui des comprimés réguliers. La surface spécifique des matériaux d’enrobage avait un effet sur les propriétés d’écoulement des mélanges et la taille des particules des matériaux d’enrobage a eu un effet sur la vitesse de dissolution. Le ratio support/enrobage du mélange de poudres (valeur de R) était un paramètre important pour les systèmes LS et devait être plus grand que 20 afin d’obtenir une meilleure libération du médicament. La formulation choisie a démontré une stabilité pour une période d’au moins 12 mois. La technique LS s’est avéré une approche efficace pour le développement de comprimés de clozapine ayant des propriétés de dissolution améliorées. Les comprimés oro-dispersibles (ODT) sont une formulation innovante qui permettent de surmonter les problèmes de déglutition et de fournir un début d'action plus rapide. Dans l’optique d’améliorer les propriétés de dissolution, un essai a été effectué pour étudier la technique LS dans la formulation des ODT de clozapine. Le PG, la MCC, le CSD et la crospovidone (CP) ont été utilisés respectivement en tant que véhicule liquide non volatile, agent de masse, agent d’enrobage sec et agent superdésintégrant pour la préparation de comprimés oro-dispersibles liquisolides (OD-LST). Le mannitol a été choisi comme agent de masse et agent édulcorant. La saccharine de sodium a été utilisée comme agent édulcorant. La caractérisation complète des comprimés a été effectuée. Le taux de libération des OD-LSTs était statisquement supérieur comparativement aux comprimés ODTs. La formulation choisie a démontré une stabilité pour une période d’au moins 6 mois. Il a été conclu que des ODT de clozapine peuvent être préparés avec succès en utilisant la technologie LS dans le but d’améliorer la désintégration et le taux de dissolution de la clozapine dans la cavité orale.
Resumo:
Chitosan and its half-acetylated derivative have been compared as excipients in mucoadhesive tablets containing ibuprofen. Initially the powder formulations containing the polymers and the drug were prepared by either co-spray drying or physical co-grinding. Polymer–drug interactions and the degree of drug crystallinity in these formulations were assessed by infrared spectroscopy and differential scanning calorimetry. Tablets were prepared and their swelling and dissolution properties were studied in media of various pHs. Mucoadhesive properties of ibuprofen-loaded and drug-free tablets were evaluated by analysing their detachment from pig gastric mucosa over a range of pHs. Greater polymer–drug interactions were seen for spray-dried particles compared to co-ground samples and drug loading into chitosan-based microparticles (41%) was greater than the corresponding half-acetylated samples (32%). Swelling and drug release was greater with the half-acetylated chitosan tablets than tablets containing the parent polymer and both tablets were mucoadhesive, the extent of which was dependent on substrate pH. The results illustrate the potential sustained drug delivery benefits of both chitosan and its half-acetylated derivative as mucoadhesive tablet excipients.
Resumo:
In the present study dissolution tests and thermoanalytical (TA) techniques were applied to metronidazole tablets from five laboratories (R, G, SA, SB, SC) available on the Brazilian market. The TA profiles indicated that in some formulations interactions between components led to eutectic products with lower melting points than metronidazole. The formulations SB and SC showed dissolution profiles that did not agree with published standards, confirming the TA results. All dissolution data were mathematically compared with kinetic models of release, demonstrating the main release mechanism was first order in all the tablets. The formulations were statistically compared by ANOVA and post-hoc tests (Tukey and Newman-Keuls), reveling significant differences in dissolution efficiency (DE).
Resumo:
A simple, rapid and inexpensive method for the determination of sparfloxacin in tablets is described. The procedure is based on the use of volumetric dosage in a nonaqueous medium in glacial acetic acid with 0.1 M perchloric acid. The method validation yielded good results and included precision and accuracy. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The validation of a microbiological assay, applying cylinder plate method for determination of the activity of lomefloxacin in coated tablets is described. Using a strain of Bacillus subtilis ATCC 9372 as the test organism, lomefloxacin was measured in concentrations ranging from 2.0 to 8.0 mu g/mL. The method validation showed that it is linear (r = 0.9999), precise (relative standard deviation 1.15%), and accurate (it measured the added quantities). The excipients did not interfere in the determination. It was concluded that the microbiological assay is satisfactory for quantitation of lomefloxacin in tablets.
Resumo:
A simple, sensitive and accurate spectrophotometric method was developed for the assay of gatifloxacin in raw material and tablets. Validation of the method yielded good results concerning range, linearity, precision and accuracy. The absorbance was measured at 287 nm for gatifloxacin tablet solutions. The linearity range was found to be 4.0-14.0 μg/mL for gatifloxacin. It was also found that the excipients in the commercial tablets did not interfere with the method.
Resumo:
Flutamide is a potent antiandrogen used for the treatment of prostatic cancer. A simple, sensitive and accurate high-performance liquid Chromatographic (HPLC) method is presented for quantitative determination of flutamide in tablets, using a reversed-phase technique and UV detection at 240 nm. The isocratic elution was used to quantify the analyte. The samples were chromatographed on Luna-C18 column and the mobile phase was 0.05 M phosphate buffer pH 4.0 - acetonitrile (50:50, v/v). The method was linear between 2.9 - 11.6 mg L -1. Over the tested concentration range the intra-day relative standard deviation for replicate analysis in tablets ranged from 0.44 to 0.78%. It was also found that the excipients in the commercial tablets did not interfere with the method.