941 resultados para Euler Zahl, Irreduzible symplektische Mannigfaltigkeit, Lagrangefaserung, Modulraum
Resumo:
Wir berechnen die Eulerzahl der 10-dimensionalen exzeptionellen irreduziblen symplektischen Mannigfaltigkeit, die von O Grady konstruiert wurde. Die Idee besteht darin, zunächst eine Lagrangefaserung zu konstruieren und dann die Eulerzahlen der Fasern zu berechnen. Es stellt sich heraus, dass fast alle Fasern die Eulerzahl 0 haben, und deswegen reduziert sich das Problem auf die Berechnung der Eulerzahlen der übrigen Fasern. Diese Fasern sind Modulräume von halbstabilen Garben auf singulären Kurven. Der Hauptteil dieser Dissertation ist der Berechnung der Eulerzahlen dieser Modulräume gewidmet. Diese Resultate sind von unabhängigem Interesse.
ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation
Resumo:
We study Krylov subspace methods for approximating the matrix-function vector product φ(tA)b where φ(z) = [exp(z) - 1]/z. This product arises in the numerical integration of large stiff systems of differential equations by the Exponential Euler Method, where A is the Jacobian matrix of the system. Recently, this method has found application in the simulation of transport phenomena in porous media within mathematical models of wood drying and groundwater flow. We develop an a posteriori upper bound on the Krylov subspace approximation error and provide a new interpretation of a previously published error estimate. This leads to an alternative Krylov approximation to φ(tA)b, the so-called Harmonic Ritz approximant, which we find does not exhibit oscillatory behaviour of the residual error.
Resumo:
In order to simulate stiff biochemical reaction systems, an explicit exponential Euler scheme is derived for multidimensional, non-commutative stochastic differential equations with a semilinear drift term. The scheme is of strong order one half and A-stable in mean square. The combination with this and the projection method shows good performance in numerical experiments dealing with an alternative formulation of the chemical Langevin equation for a human ether a-go-go related gene ion channel mode
Resumo:
It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986)] that the Euler Painlevé equation yy[script `]+ay[script ']2+ f(x)yy[script ']+g(x) y2+by[script ']+c=0 represents the generalized Burgers equations (GBE's) in the same manner as Painlevé equations do the KdV type. The GBE was treated with a damping term in some detail. In this paper another GBE ut+uaux+Ju/2t =(gd/2)uxx (the nonplanar Burgers equation) is considered. It is found that its self-similar form is again governed by the Euler Painlevé equation. The ranges of the parameter alpha for which solutions of the connection problem to the self-similar equation exist are obtained numerically and confirmed via some integral relations derived from the ODE's. Special exact analytic solutions for the nonplanar Burgers equation are also obtained. These generalize the well-known single hump solutions for the Burgers equation to other geometries J=1,2; the nonlinear convection term, however, is not quadratic in these cases. This study fortifies the conjecture regarding the importance of the Euler Painlevé equation with respect to GBE's. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
Initial-value problems for the generalized Burgers equation (GBE) ut+u betaux+lambdaualpha =(delta/2)uxx are discussed for the single hump type of initial data both continuous and discontinuous. The numerical solution is carried to the self-similar ``intermediate asymptotic'' regime when the solution is given analytically by the self-similar form. The nonlinear (transformed) ordinary differential equations (ODE's) describing the self-similar form are generalizations of a class discussed by Euler and Painlevé and quoted by Kamke. These ODE's are new, and it is postulated that they characterize GBE's in the same manner as the Painlev equations categorize the Kortweg-de Vries (KdV) type. A connection problem for some related ODE's satisfying proper asymptotic conditions at x=±[infinity], is solved. The range of amplitude parameter is found for which the solution of the connection problem exists. The other solutions of the above GBE, which display several interesting features such as peaking, breaking, and a long shelf on the left for negative values of the damping coefficient lambda, are also discussed. The results are compared with those holding for the modified KdV equation with damping. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
This paper presents an inverse dynamic formulation by the Newton–Euler approach for the Stewart platform manipulator of the most general architecture and models all the dynamic and gravity effects as well as the viscous friction at the joints. It is shown that a proper elimination procedure results in a remarkably economical and fast algorithm for the solution of actuator forces, which makes the method quite suitable for on-line control purposes. In addition, the parallelism inherent in the manipulator and in the modelling makes the algorithm quite efficient in a parallel computing environment, where it can be made as fast as the corresponding formulation for the 6-dof serial manipulator. The formulation has been implemented in a program and has been used for a few trajectories planned for a test manipulator. Results of simulation presented in the paper reveal the nature of the variation of actuator forces in the Stewart platform and justify the dynamic modelling for control.
Resumo:
A new way of flux-splitting, termed as the wave-particle splitting is presented for developing upwind methods for solving Euler equations of gas dynamics. Based on this splitting, two new upwind methods termed as Acoustic Flux Vector Splitting (AFVS) and Acoustic Flux Difference Splitting (AFDS) methods are developed. A new Boltzmann scheme, which closely resembles the wave-particle splitting, is developed using the kinetic theory of gases. This method, termed as Peculiar Velocity based Upwind (PVU) method, uses the concept of peculiar velocity for upwinding. A special feature of all these methods that the unidirectional and multidirectional parts of the flux vector are treated separately. Extensive computations done using these schemes demonstrate the soundness of the ideas.
Resumo:
The study of directional derivative lead to the development of a rotationally invariant kinetic upwind method (KUMARI)3 which avoids dimension by dimension splitting. The method is upwind and rotationally invariant and hence truly multidimensional or multidirectional upwind scheme. The extension of KUMARI to second order is as well presented.
Resumo:
In the present work, the effect of longitudinal magnetic field on wave dispersion characteristics of equivalent continuum structure (ECS) of single-walled carbon nanotubes (SWCNT) embedded in elastic medium is studied. The ECS is modelled as an Euler-Bernoulli beam. The chemical bonds between a SWCNT and the elastic medium are assumed to be formed. The elastic matrix is described by Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation. The governing equations of motion for the ECS of SWCNT under a longitudinal magnetic field are derived by considering the Lorentz magnetic force obtained from Maxwell's relations within the frame work of nonlocal elasticity theory. The wave propagation analysis is performed using spectral analysis. The results obtained show that the velocity of flexural waves in SWCNTs increases with the increase of longitudinal magnetic field exerted on it in the frequency range: 0-20 THz. The present analysis also shows that the flexural wave dispersion in the ECS of SWCNT obtained by local and nonlocal elasticity theories differ. It is found that the nonlocality reduces the wave velocity irrespective of the presence of the magnetic field and does not influences it in the higher frequency region. Further it is found that the presence of elastic matrix introduces the frequency band gap in flexural wave mode. The band gap in the flexural wave is found to independent of strength of the longitudinal magnetic field. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The curvature related locking phenomena in the out-of-plane deformation of Timoshenko and Euler-Bernoulli curved beam elements are demonstrated and a novel approach is proposed to circumvent them. Both flexure and Torsion locking phenomena are noticed in Timoshenko beam and torsion locking phenomenon alone in Euler-Bernoulli beam. Two locking-free curved beam finite element models are developed using coupled polynomial displacement field interpolations to eliminate these locking effects. The coupled polynomial interpolation fields are derived independently for Timoshenko and Euler-Bernoulli beam elements using the governing equations. The presented of penalty terms in the couple displacement fields incorporates the flexure-torsion coupling and flexure-shear coupling effects in an approximate manner and produce no spurious constraints in the extreme geometric limits of flexure, torsion and shear stiffness. the proposed couple polynomial finite element models, as special cases, reduce to the conventional Timoshenko beam element and Euler-Bernoulli beam element, respectively. These models are shown to perform consistently over a wide range of flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ) stiffness ratios and are inherently devoid of flexure, torsion and shear locking phenomena. The efficacy, accuracy and reliability of the proposed models to straight and curved beam applications are demonstrated through numerical examples. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The governing differential equation of a rotating beam becomes the stiff-string equation if we assume uniform tension. We find the tension in the stiff string which yields the same frequency as a rotating cantilever beam with a prescribed rotating speed and identical uniform mass and stiffness. This tension varies for different modes and are found by solving a transcendental equation using bisection method. We also find the location along the rotating beam where equivalent constant tension for the stiff string acts for a given mode. Both Euler-Bernoulli and Timoshenko beams are considered for numerical results. The results provide physical insight into relation between rotating beams and stiff string which are useful for creating basis functions for approximate methods in vibration analysis of rotating beams.
Resumo:
In this paper, the free vibration of a non-uniform free-free Euler-Bernoulli beam is studied using an inverse problem approach. It is found that the fourth-order governing differential equation for such beams possess a fundamental closed-form solution for certain polynomial variations of the mass and stiffness. An infinite number of non-uniform free-free beams exist, with different mass and stiffness variations, but sharing the same fundamental frequency. A detailed study is conducted for linear, quadratic and cubic variations of mass, and on how to pre-select the internal nodes such that the closed-form solutions exist for the three cases. A special case is also considered where, at the internal nodes, external elastic constraints are present. The derived results are provided as benchmark solutions for the validation of non-uniform free-free beam numerical codes. (C) 2013 Elsevier Ltd. All rights reserved.