Closed-form solutions for non-uniform Euler-Bernoulli free-free beams


Autoria(s): Sarkar, Korak; Ganguli, Ranjan
Data(s)

11/11/2013

Resumo

In this paper, the free vibration of a non-uniform free-free Euler-Bernoulli beam is studied using an inverse problem approach. It is found that the fourth-order governing differential equation for such beams possess a fundamental closed-form solution for certain polynomial variations of the mass and stiffness. An infinite number of non-uniform free-free beams exist, with different mass and stiffness variations, but sharing the same fundamental frequency. A detailed study is conducted for linear, quadratic and cubic variations of mass, and on how to pre-select the internal nodes such that the closed-form solutions exist for the three cases. A special case is also considered where, at the internal nodes, external elastic constraints are present. The derived results are provided as benchmark solutions for the validation of non-uniform free-free beam numerical codes. (C) 2013 Elsevier Ltd. All rights reserved.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/47467/1/Jou_Sou_Vibr_332-23_6078_2013.pdf

Sarkar, Korak and Ganguli, Ranjan (2013) Closed-form solutions for non-uniform Euler-Bernoulli free-free beams. In: Journal of Sound and Vibration, 332 (23). pp. 6078-6092.

Publicador

Elsevier Science

Relação

http://dx.doi.org/10.1016/j.jsv.2013.06.008

http://eprints.iisc.ernet.in/47467/

Palavras-Chave #Aerospace Engineering (Formerly, Aeronautical Engineering)
Tipo

Journal Article

PeerReviewed