Generalized Burgers equations and Euler-Painlev transcendents. I


Autoria(s): Sachdev, PL; Nair, KRC; Tikekar, VG
Data(s)

01/06/1986

Resumo

Initial-value problems for the generalized Burgers equation (GBE) ut+u betaux+lambdaualpha =(delta/2)uxx are discussed for the single hump type of initial data both continuous and discontinuous. The numerical solution is carried to the self-similar ``intermediate asymptotic'' regime when the solution is given analytically by the self-similar form. The nonlinear (transformed) ordinary differential equations (ODE's) describing the self-similar form are generalizations of a class discussed by Euler and Painlevé and quoted by Kamke. These ODE's are new, and it is postulated that they characterize GBE's in the same manner as the Painlev equations categorize the Kortweg-de Vries (KdV) type. A connection problem for some related ODE's satisfying proper asymptotic conditions at x=±[infinity], is solved. The range of amplitude parameter is found for which the solution of the connection problem exists. The other solutions of the above GBE, which display several interesting features such as peaking, breaking, and a long shelf on the left for negative values of the damping coefficient lambda, are also discussed. The results are compared with those holding for the modified KdV equation with damping. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/21989/1/GetPDFServlet.pdf

Sachdev, PL and Nair, KRC and Tikekar, VG (1986) Generalized Burgers equations and Euler-Painlev transcendents. I. In: Journal of Mathematical Physics, 27 (6). pp. 1506-1522.

Publicador

American Institute of Physics

Relação

http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JMAPAQ000027000006001506000001&idtype=cvips&gifs=yes

http://eprints.iisc.ernet.in/21989/

Palavras-Chave #Mathematics
Tipo

Journal Article

PeerReviewed