90 resultados para Estimació de trajectòries
Resumo:
This thesis proposes a solution to the problem of estimating the motion of an Unmanned Underwater Vehicle (UUV). Our approach is based on the integration of the incremental measurements which are provided by a vision system. When the vehicle is close to the underwater terrain, it constructs a visual map (so called "mosaic") of the area where the mission takes place while, at the same time, it localizes itself on this map, following the Concurrent Mapping and Localization strategy. The proposed methodology to achieve this goal is based on a feature-based mosaicking algorithm. A down-looking camera is attached to the underwater vehicle. As the vehicle moves, a sequence of images of the sea-floor is acquired by the camera. For every image of the sequence, a set of characteristic features is detected by means of a corner detector. Then, their correspondences are found in the next image of the sequence. Solving the correspondence problem in an accurate and reliable way is a difficult task in computer vision. We consider different alternatives to solve this problem by introducing a detailed analysis of the textural characteristics of the image. This is done in two phases: first comparing different texture operators individually, and next selecting those that best characterize the point/matching pair and using them together to obtain a more robust characterization. Various alternatives are also studied to merge the information provided by the individual texture operators. Finally, the best approach in terms of robustness and efficiency is proposed. After the correspondences have been solved, for every pair of consecutive images we obtain a list of image features in the first image and their matchings in the next frame. Our aim is now to recover the apparent motion of the camera from these features. Although an accurate texture analysis is devoted to the matching pro-cedure, some false matches (known as outliers) could still appear among the right correspon-dences. For this reason, a robust estimation technique is used to estimate the planar transformation (homography) which explains the dominant motion of the image. Next, this homography is used to warp the processed image to the common mosaic frame, constructing a composite image formed by every frame of the sequence. With the aim of estimating the position of the vehicle as the mosaic is being constructed, the 3D motion of the vehicle can be computed from the measurements obtained by a sonar altimeter and the incremental motion computed from the homography. Unfortunately, as the mosaic increases in size, image local alignment errors increase the inaccuracies associated to the position of the vehicle. Occasionally, the trajectory described by the vehicle may cross over itself. In this situation new information is available, and the system can readjust the position estimates. Our proposal consists not only in localizing the vehicle, but also in readjusting the trajectory described by the vehicle when crossover information is obtained. This is achieved by implementing an Augmented State Kalman Filter (ASKF). Kalman filtering appears as an adequate framework to deal with position estimates and their associated covariances. Finally, some experimental results are shown. A laboratory setup has been used to analyze and evaluate the accuracy of the mosaicking system. This setup enables a quantitative measurement of the accumulated errors of the mosaics created in the lab. Then, the results obtained from real sea trials using the URIS underwater vehicle are shown.
Resumo:
Estudi de la Cydia pomonella (L.), corc de les pomes i de les peres que és una plaga molt important en tot l’àmbit estatal i del control que cal fer-ne per tal d’evitar la pèrdua total o parcial de la collita
Resumo:
Aquest projecte s’aplica sobre el robot PRIM (Plataforma Robotitzada d’Informació Multimèdia), un robot autònom no humanoide creat el 2004 per Ateneu Informàtic (AI) que permet realitzar trajectòries 2D gràcies a un sistema de tracció format per dues rodes motrius propulsades independentment. La plataforma PRIM és controlada a partir del control predictiu, aquest control es va implementar en un projecte anterior, creat per l’Alexandre Blasco Gutierrez i titulat “Implementació de tècniques MPC (Model Predictiu Control) sobre la plataforma PRIM I”. El que es pretén en aquest projecte és millorar els resultats obtinguts en el passat projecte reformulant la llei de control i analitzar les discrepàncies obtingudes en les metodologies que s’utilitzen per minimitzar la funció de costos a partir de simulacions de trajectòries
Resumo:
En el laboratori docent de robòtica s'utilitzen robots mòbils autònoms per treballar aspectes relacionats amb el posicionament, el control de trajectòries, la construcció de mapes... Es disposa de cinc robots comercials anomenats “e-puck”, que es caracteritzen per les seves dimensions reduïdes, dos motors i un conjunt complet de sensors. Aquests robots es programen en C++ utilitzant el simulador Webots, que disposa d'un conjunt de llibreries per programar el robot. També es disposa d'un entorn de proves on els robots es poden moure i evitar obstacles. Donat el poc temps que disposen els estudiants que realitzen pràctiques en aquest laboratori, és d'interès desenvolupar un software que contingui ja el posicionament del robot mitjançant odometria i també varis algoritmes de control de trajectòries. Per últim, en el laboratori es disposa de càmeres i targes d'adquisició de dades. Així doncs els objectius que s'han proposat per el projecte són: 1. Estudi de la documentació i software proporcinats pels fabricants del robot i de l'entorn Webots; 2. Programació del software de l'odometria i realització de proves per comprovar-ne la precisió; 3. Disseny, programació i verificació del software dels algoritmes de planificació de trajectòries. Realització d'experiments per a comprovar-ne el funcionament i 4. Disseny, programació i verificació d'un sistema de visió artificial que permeti conèixer la posició absoluta del robot en l'entorn
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n. Resumen tambi??n en ingl??s
Resumo:
Resumen tomado de la publicaci??n. Resumen tambi??n en ingl??s
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Contiene tablas, gráficas y esquema. Resumen tomado parcialmente del autor
Resumo:
Resumen tomado de la publicaci??n. Contiene gr??ficas y mapas de distribuci??n del Potencial de Rafting
Resumo:
En la educación primaria y secundaria hay que hacer inciso en la importancia de la estimación como a herramienta útil y practica, y a que forma parte fundamental de una estructura conceptual que los alumnos de primaria y secundaria tienen que aprender a manejar.
Resumo:
Resumen de la revista
Resumo:
Crédito primero del módulo número seis del área de matemáticas del ciclo 12-16. Trata los temas de estadística, probabilidad y sólidos espaciales. En la primera parte explicita los objetivos didácticos, los tipos de contenidos, las actividades de aprendizaje secuenciadas y las actividades de evaluación. En la segunda parte incluye todo el material didáctico complementario de las actividades de aprendizaje para cada uno de los tres bloques de contenido junto a un comentario del mismo.
Resumo:
Resumen tomado de la publicaci??n. IV n??mero monogr??fico con el t??tulo: VII Seminario de Investigaci??n y pensamiento num??rico y algebraico (PNA).