898 resultados para Error tolerance
Resumo:
Topological quantum error correction codes are currently among the most promising candidates for efficiently dealing with the decoherence effects inherently present in quantum devices. Numerically, their theoretical error threshold can be calculated by mapping the underlying quantum problem to a related classical statistical-mechanical spin system with quenched disorder. Here, we present results for the general fault-tolerant regime, where we consider both qubit and measurement errors. However, unlike in previous studies, here we vary the strength of the different error sources independently. Our results highlight peculiar differences between toric and color codes. This study complements previous results published in New J. Phys. 13, 083006 (2011).
Resumo:
Ensuring reliable operation over an extended period of time is one of the biggest challenges facing present day electronic systems. The increased vulnerability of the components to atmospheric particle strikes poses a big threat in attaining the reliability required for various mission critical applications. Various soft error mitigation methodologies exist to address this reliability challenge. A general solution to this problem is to arrive at a soft error mitigation methodology with an acceptable implementation overhead and error tolerance level. This implementation overhead can then be reduced by taking advantage of various derating effects like logical derating, electrical derating and timing window derating, and/or making use of application redundancy, e. g. redundancy in firmware/software executing on the so designed robust hardware. In this paper, we analyze the impact of various derating factors and show how they can be profitably employed to reduce the hardware overhead to implement a given level of soft error robustness. This analysis is performed on a set of benchmark circuits using the delayed capture methodology. Experimental results show upto 23% reduction in the hardware overhead when considering individual and combined derating factors.
Resumo:
Wearable devices performing advanced bio-signal analysis algorithms are aimed to foster a revolution in healthcare provision of chronic cardiac diseases. In this context, energy efficiency is of paramount importance, as long-term monitoring must be ensured while relying on a tiny power source. Operating at a scaled supply voltage, just above the threshold voltage, effectively helps in saving substantial energy, but it makes circuits, and especially memories, more prone to errors, threatening the correct execution of algorithms. The use of error detection and correction codes may help to protect the entire memory content, however it incurs in large area and energy overheads which may not be compatible with the tight energy budgets of wearable systems. To cope with this challenge, in this paper we propose to limit the overhead of traditional schemes by selectively detecting and correcting errors only in data highly impacting the end-to-end quality of service of ultra-low power wearable electrocardiogram (ECG) devices. This partition adopts the protection of either significant words or significant bits of each data element, according to the application characteristics (statistical properties of the data in the application buffers), and its impact in determining the output. The proposed heterogeneous error protection scheme in real ECG signals allows substantial energy savings (11% in wearable devices) compared to state-of-the-art approaches, like ECC, in which the whole memory is protected against errors. At the same time, it also results in negligible output quality degradation in the evaluated power spectrum analysis application of ECG signals.
Resumo:
We consider the problem of building robust fuzzy extractors, which allow two parties holding similar random variables W, W' to agree on a secret key R in the presence of an active adversary. Robust fuzzy extractors were defined by Dodis et al. in Crypto 2006 [6] to be noninteractive, i.e., only one message P, which can be modified by an unbounded adversary, can pass from one party to the other. This allows them to be used by a single party at different points in time (e.g., for key recovery or biometric authentication), but also presents an additional challenge: what if R is used, and thus possibly observed by the adversary, before the adversary has a chance to modify P. Fuzzy extractors secure against such a strong attack are called post-application robust. We construct a fuzzy extractor with post-application robustness that extracts a shared secret key of up to (2m−n)/2 bits (depending on error-tolerance and security parameters), where n is the bit-length and m is the entropy of W . The previously best known result, also of Dodis et al., [6] extracted up to (2m − n)/3 bits (depending on the same parameters).
Resumo:
Dynamic Voltage and Frequency Scaling (DVFS) exhibits fundamental limitations as a method to reduce energy consumption in computing systems. In the HPC domain, where performance is of highest priority and codes are heavily optimized to minimize idle time, DVFS has limited opportunity to achieve substantial energy savings. This paper explores if operating processors Near the transistor Threshold Volt- age (NTV) is a better alternative to DVFS for break- ing the power wall in HPC. NTV presents challenges, since it compromises both performance and reliability to reduce power consumption. We present a first of its kind study of a significance-driven execution paradigm that selectively uses NTV and algorithmic error tolerance to reduce energy consumption in performance- constrained HPC environments. Using an iterative algorithm as a use case, we present an adaptive execution scheme that switches between near-threshold execution on many cores and above-threshold execution on one core, as the computational significance of iterations in the algorithm evolves over time. Using this scheme on state-of-the-art hardware, we demonstrate energy savings ranging between 35% to 67%, while compromising neither correctness nor performance.
Resumo:
Sound localization can be defined as the ability to identify the position of an input sound source and is considered a powerful aspect of mammalian perception. For low frequency sounds, i.e., in the range 270 Hz-1.5 KHz, the mammalian auditory pathway achieves this by extracting the Interaural Time Difference between sound signals being received by the left and right ear. This processing is performed in a region of the brain known as the Medial Superior Olive (MSO). This paper presents a Spiking Neural Network (SNN) based model of the MSO. The network model is trained using the Spike Timing Dependent Plasticity learning rule using experimentally observed Head Related Transfer Function data in an adult domestic cat. The results presented demonstrate how the proposed SNN model is able to perform sound localization with an accuracy of 91.82% when an error tolerance of +/-10 degrees is used. For angular resolutions down to 2.5 degrees , it will be demonstrated how software based simulations of the model incur significant computation times. The paper thus also addresses preliminary implementation on a Field Programmable Gate Array based hardware platform to accelerate system performance.
Resumo:
An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
Non-linear methods for estimating variability in time-series are currently of widespread use. Among such methods are approximate entropy (ApEn) and sample approximate entropy (SampEn). The applicability of ApEn and SampEn in analyzing data is evident and their use is increasing. However, consistency is a point of concern in these tools, i.e., the classification of the temporal organization of a data set might indicate a relative less ordered series in relation to another when the opposite is true. As highlighted by their proponents themselves, ApEn and SampEn might present incorrect results due to this lack of consistency. In this study, we present a method which gains consistency by using ApEn repeatedly in a wide range of combinations of window lengths and matching error tolerance. The tool is called volumetric approximate entropy, vApEn. We analyze nine artificially generated prototypical time-series with different degrees of temporal order (combinations of sine waves, logistic maps with different control parameter values, random noises). While ApEn/SampEn clearly fail to consistently identify the temporal order of the sequences, vApEn correctly do. In order to validate the tool we performed shuffled and surrogate data analysis. Statistical analysis confirmed the consistency of the method. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
During last decades, the Internet teleobotics has been growing at an enormous ratedue to the rapid improvement of Internet technology. This paper presents theinternet-based remote control of mobile robot. To face unpredictable Internet delaysand possible connection rupture, a direct continuous control based teleoperationarchitecture with “Speed Limit Module” (SLM) and “Delay Approximator” (DA) isproposed. This direct continuous control architecture guarantees the path error of therobot motion is restricted within the path error tolerance of the application.Experiment results show the feasibility and effectiveness of this direct Internet controlarchitecture in the real Internet environment.
Resumo:
Systems used for target localization, such as goods, individuals, or animals, commonly rely on operational means to meet the final application demands. However, what would happen if some means were powered up randomly by harvesting systems? And what if those devices not randomly powered had their duty cycles restricted? Under what conditions would such an operation be tolerable in localization services? What if the references provided by nodes in a tracking problem were distorted? Moreover, there is an underlying topic common to the previous questions regarding the transfer of conceptual models to reality in field tests: what challenges are faced upon deploying a localization network that integrates energy harvesting modules? The application scenario of the system studied is a traditional herding environment of semi domesticated reindeer (Rangifer tarandus tarandus) in northern Scandinavia. In these conditions, information on approximate locations of reindeer is as important as environmental preservation. Herders also need cost-effective devices capable of operating unattended in, sometimes, extreme weather conditions. The analyses developed are worthy not only for the specific application environment presented, but also because they may serve as an approach to performance of navigation systems in absence of reasonably accurate references like the ones of the Global Positioning System (GPS). A number of energy-harvesting solutions, like thermal and radio-frequency harvesting, do not commonly provide power beyond one milliwatt. When they do, battery buffers may be needed (as it happens with solar energy) which may raise costs and make systems more dependent on environmental temperatures. In general, given our problem, a harvesting system is needed that be capable of providing energy bursts of, at least, some milliwatts. Many works on localization problems assume that devices have certain capabilities to determine unknown locations based on range-based techniques or fingerprinting which cannot be assumed in the approach considered herein. The system presented is akin to range-free techniques, but goes to the extent of considering very low node densities: most range-free techniques are, therefore, not applicable. Animal localization, in particular, uses to be supported by accurate devices such as GPS collars which deplete batteries in, maximum, a few days. Such short-life solutions are not particularly desirable in the framework considered. In tracking, the challenge may times addressed aims at attaining high precision levels from complex reliable hardware and thorough processing techniques. One of the challenges in this Thesis is the use of equipment with just part of its facilities in permanent operation, which may yield high input noise levels in the form of distorted reference points. The solution presented integrates a kinetic harvesting module in some nodes which are expected to be a majority in the network. These modules are capable of providing power bursts of some milliwatts which suffice to meet node energy demands. The usage of harvesting modules in the aforementioned conditions makes the system less dependent on environmental temperatures as no batteries are used in nodes with harvesters--it may be also an advantage in economic terms. There is a second kind of nodes. They are battery powered (without kinetic energy harvesters), and are, therefore, dependent on temperature and battery replacements. In addition, their operation is constrained by duty cycles in order to extend node lifetime and, consequently, their autonomy. There is, in turn, a third type of nodes (hotspots) which can be static or mobile. They are also battery-powered, and are used to retrieve information from the network so that it is presented to users. The system operational chain starts at the kinetic-powered nodes broadcasting their own identifier. If an identifier is received at a battery-powered node, the latter stores it for its records. Later, as the recording node meets a hotspot, its full record of detections is transferred to the hotspot. Every detection registry comprises, at least, a node identifier and the position read from its GPS module by the battery-operated node previously to detection. The characteristics of the system presented make the aforementioned operation own certain particularities which are also studied. First, identifier transmissions are random as they depend on movements at kinetic modules--reindeer movements in our application. Not every movement suffices since it must overcome a certain energy threshold. Second, identifier transmissions may not be heard unless there is a battery-powered node in the surroundings. Third, battery-powered nodes do not poll continuously their GPS module, hence localization errors rise even more. Let's recall at this point that such behavior is tight to the aforementioned power saving policies to extend node lifetime. Last, some time is elapsed between the instant an identifier random transmission is detected and the moment the user is aware of such a detection: it takes some time to find a hotspot. Tracking is posed as a problem of a single kinetically-powered target and a population of battery-operated nodes with higher densities than before in localization. Since the latter provide their approximate positions as reference locations, the study is again focused on assessing the impact of such distorted references on performance. Unlike in localization, distance-estimation capabilities based on signal parameters are assumed in this problem. Three variants of the Kalman filter family are applied in this context: the regular Kalman filter, the alpha-beta filter, and the unscented Kalman filter. The study enclosed hereafter comprises both field tests and simulations. Field tests were used mainly to assess the challenges related to power supply and operation in extreme conditions as well as to model nodes and some aspects of their operation in the application scenario. These models are the basics of the simulations developed later. The overall system performance is analyzed according to three metrics: number of detections per kinetic node, accuracy, and latency. The links between these metrics and the operational conditions are also discussed and characterized statistically. Subsequently, such statistical characterization is used to forecast performance figures given specific operational parameters. In tracking, also studied via simulations, nonlinear relationships are found between accuracy and duty cycles and cluster sizes of battery-operated nodes. The solution presented may be more complex in terms of network structure than existing solutions based on GPS collars. However, its main gain lies on taking advantage of users' error tolerance to reduce costs and become more environmentally friendly by diminishing the potential amount of batteries that can be lost. Whether it is applicable or not depends ultimately on the conditions and requirements imposed by users' needs and operational environments, which is, as it has been explained, one of the topics of this Thesis.
Resumo:
A new passive shim design method is presented which is based on a magnetization mapping approach. Well defined regions with similar magnetization values define the optimal number of passive shims, their shape and position. The new design method is applied in a shimming process without prior-axial shim localization; this reduces the possibility of introducing new errors. The new shim design methodology reduces the number of iterations and the quantity of material required to shim a magnet. Only a few iterations (1-5) are required to shim a whole body horizontal bore magnet with a manufacturing error tolerance larger than 0.1 mm and smaller than 0.5 mm. One numerical example is presented
Resumo:
Abstract We present ideas about creating a next generation Intrusion Detection System (IDS) based on the latest immunological theories. The central challenge with computer security is determining the difference between normal and potentially harmful activity. For half a century, developers have protected their systems by coding rules that identify and block specific events. However, the nature of current and future threats in conjunction with ever larger IT systems urgently requires the development of automated and adaptive defensive tools. A promising solution is emerging in the form of Artificial Immune Systems (AIS): The Human Immune System (HIS) can detect and defend against harmful and previously unseen invaders, so can we not build a similar Intrusion Detection System (IDS) for our computers? Presumably, those systems would then have the same beneficial properties as HIS like error tolerance, adaptation and self-monitoring. Current AIS have been successful on test systems, but the algorithms rely on self-nonself discrimination, as stipulated in classical immunology. However, immunologist are increasingly finding fault with traditional self-nonself thinking and a new 'Danger Theory' (DT) is emerging. This new theory suggests that the immune system reacts to threats based on the correlation of various (danger) signals and it provides a method of 'grounding' the immune response, i.e. linking it directly to the attacker. Little is currently understood of the precise nature and correlation of these signals and the theory is a topic of hot debate. It is the aim of this research to investigate this correlation and to translate the DT into the realms of computer security, thereby creating AIS that are no longer limited by self-nonself discrimination. It should be noted that we do not intend to defend this controversial theory per se, although as a deliverable this project will add to the body of knowledge in this area. Rather we are interested in its merits for scaling up AIS applications by overcoming self-nonself discrimination problems.
Resumo:
Abstract We present ideas about creating a next generation Intrusion Detection System (IDS) based on the latest immunological theories. The central challenge with computer security is determining the difference between normal and potentially harmful activity. For half a century, developers have protected their systems by coding rules that identify and block specific events. However, the nature of current and future threats in conjunction with ever larger IT systems urgently requires the development of automated and adaptive defensive tools. A promising solution is emerging in the form of Artificial Immune Systems (AIS): The Human Immune System (HIS) can detect and defend against harmful and previously unseen invaders, so can we not build a similar Intrusion Detection System (IDS) for our computers? Presumably, those systems would then have the same beneficial properties as HIS like error tolerance, adaptation and self-monitoring. Current AIS have been successful on test systems, but the algorithms rely on self-nonself discrimination, as stipulated in classical immunology. However, immunologist are increasingly finding fault with traditional self-nonself thinking and a new 'Danger Theory' (DT) is emerging. This new theory suggests that the immune system reacts to threats based on the correlation of various (danger) signals and it provides a method of 'grounding' the immune response, i.e. linking it directly to the attacker. Little is currently understood of the precise nature and correlation of these signals and the theory is a topic of hot debate. It is the aim of this research to investigate this correlation and to translate the DT into the realms of computer security, thereby creating AIS that are no longer limited by self-nonself discrimination. It should be noted that we do not intend to defend this controversial theory per se, although as a deliverable this project will add to the body of knowledge in this area. Rather we are interested in its merits for scaling up AIS applications by overcoming self-nonself discrimination problems.
Resumo:
We present ideas about creating a next generation Intrusion Detection System (IDS) based on the latest immunological theories. The central challenge with computer security is determining the difference between normal and potentially harmful activity. For half a century, developers have protected their systems by coding rules that identify and block specific events. However, the nature of current and future threats in conjunction with ever larger IT systems urgently requires the development of automated and adaptive defensive tools. A promising solution is emerging in the form of Artificial Immune Systems (AIS): The Human Immune System (HIS) can detect and defend against harmful and previously unseen invaders, so can we not build a similar Intrusion Detection System (IDS) for our computers? Presumably, those systems would then have the same beneficial properties as HIS like error tolerance, adaptation and self-monitoring. Current AIS have been successful on test systems, but the algorithms rely on self-nonself discrimination, as stipulated in classical immunology. However, immunologist are increasingly finding fault with traditional self-nonself thinking and a new ‘Danger Theory’ (DT) is emerging. This new theory suggests that the immune system reacts to threats based on the correlation of various (danger) signals and it provides a method of ‘grounding’ the immune response, i.e. linking it directly to the attacker. Little is currently understood of the precise nature and correlation of these signals and the theory is a topic of hot debate. It is the aim of this research to investigate this correlation and to translate the DT into the realms of computer security, thereby creating AIS that are no longer limited by self-nonself discrimination. It should be noted that we do not intend to defend this controversial theory per se, although as a deliverable this project will add to the body of knowledge in this area. Rather we are interested in its merits for scaling up AIS applications by overcoming self-nonself discrimination problems.