982 resultados para Dip coating techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of undoped and Sb-doped (2 atg%) SnO2 have been prepared by sol-gel dip-coating technique on borosilicate glasses. Variation of photoconductivity excitation with wavelength and optical absorption indicate indirect bandgap transition with energy of ≅ 3.5 eV. Conductance as function of temperature indicates two levels of capture with 39 and 81 meV as activation energies, which may be related to an Sb donor and oxygen vacancy respectively. Electron trapping by these levels are practically destroyed by UV photoexcitation (305 nm) and heating in vacuum to 200°C. Gas analysis using a mass spectrometer indicates an oxygen related level, which may not be desorbed in the simpler O2 form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conditions for the preparation of luminescent materials, consisting of Eu3+ ions entrapped in a titanium matrix, in the forma of a thin film, using the sol-gel process, are described. The films were obtained from sols prepared with TEOS and TEOT, in the presence of acetylacetone as the hidrolysis-retarding agent, using the dip-coating and spin-coating techniques. The influence of these techniques on the films based on titanium and silicon are presented. The Eu3+ was used as a luminescent probe. The films have been characterized by luminescence, reflection and transmittance. The thickness of the films could be related to the preparation procedure. Transparent thin films have been prepared by dip-coating technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the growth of Bi2-xPbxSr2Can-1CunO2n+4 thin films by the dip-coating technique for 0.4 less than or equal to x less than or equal to 1. X-ray and Raman spectroscopic techniques were carried out in order to characterize the films at room temperature. From X-ray data it is observed that the films are multi-phased presenting phases 2201, 2212 and 2223 along with the undesirable Ca2PbO4 phase. It is also observed that phase 2212 becomes dominant when Pb content increases. The Raman modes observed agree with the overall features expected for these compounds. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting from aqueous colloidal suspensions, undoped and Nb5+ doped SnO2 thin films have been prepared by using the dip-coating sol gel process. X-ray diffraction results show that films are polycrystalline with crystallites of average size1-4nm. Decreasing the thickness of the films and increasing the Nb5+ concentration limits the crystallite size growth during firing. Complex impedance measurements reveal capacitive and resistive effects between adjacent crystallites or grains, characteristic of electrical potential barriers. The transfer of charge throughout these barriers determines the macroscopic electrical resistance of the layer. The analysis of the optical absorption spectra shows that the samples present more than 80% of their transmittance in the visible region and the value of the band gap energy increases with decreasing crystallite size. © 1997 Chapman & Hall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of undoped and Sb-doped SnO2 have been prepared by a sol-gel dip-coating technique. For the high doping level (2-3 mol% Sb) n-type degenerate conduction is expected, however, measurements of resistance as a function of temperature show that doped samples exhibit strong electron trapping, with capture levels at 39 and 81 meV. Heating in a vacuum and irradiation with UV monochromatic light (305 nm) improve the electrical characteristics, decreasing the carrier capture at low temperature. This suggests an oxygen related level, which can be eliminated by a photodesorption process. Absorption spectral dependence indicates an indirect bandgap transition with Eg ≅ 3.5 eV. Current-voltage characteristics indicate a thermionic emission mechanism through interfacial states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of sulfated zirconia films from a sol-gel derived aqueous suspension is subjected to double-optical monitoring during batch dip coating. Interpretation of interferometric patterns, previously obscured by a variable refractive index, is now made possible by addition of its direct measurement by a polarimetric technique in real time. Significant sensitivity of the resulting physical thickness and refractive index curves (uncertainties of ±7 nm and ±0.005, respectively) to temporal film evolution is shown under different withdrawal speeds. As a first contribution to quantitative understanding of temporal film formation with varying nanostructure during dip coating, detailed analysis is directed to the stage of the process dominated by mass drainage, whose simple modeling with temporal t-1/2 dependence is verified experimentally. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale production of reliable carbon nanotubes (CNTs) based gas sensors involves the development of scalable and reliable processes for the fabrication of films with controlled morphology. Here, we report for the first time on highly scalable, ultrathin CNT films, to be employed as conductometric sensors for NO2 and NH3 detection at room temperature. The sensing films are produced by dip coating using dissolved CNTs in chlorosulfonic acid as a working solution. This surfactant-free approach does not require any post-treatment for the removal of dispersants or any CNTs functionalization, thus promising high quality CNTs for better sensitivity and low production costs. The effect of CNT film thickness and defect density on the gas sensing properties has been investigated. Detection limits of 1 ppm for NO2 and 7 ppm for NH3 have been achieved at room temperature. The experimental results reveal that defect density and film thickness can be controlled to optimize the sensing response. Gas desorption has been accelerated by continuous in-situ UV irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study. Nafion (R) 117 membrane is surface-modified with mesoporous silica layers through in situ surfactant-templated sol-gel reaction. The reaction makes use of tetraethyl orthosilicate (TEOS) under acidic condition via dip-coating technique on both sides. Scanning electron microscopy (SEM), Fourier transformation infrared (FTIR), and thermogravimetric analysis (TGA) are employed to characterize the resultant membranes. Proton conductivity and methanol permeability of the membranes are also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article highlights new insights into production of thin titania films widely used as catalyst support in many modern reactors including capillary microreactors, microstructured fixed-bed reactors and falling film microreactors. Dip-coating of a Mania sol onto a Si substrate has been studied in the range of the sol viscosities of 1.5-2.5 mPa s and the sol withdrawal rates of 0.2-18 mm/s. Different viscosities of sols were created by addition of desired amounts of nitric acid to the synthesis mixture of titanium isopropoxide and Plutonic F127 in ethanol which allowed to control the rate of the condensation reactions. Uniform inesoporous titania coatings were obtained at the solvent withdrawal rates below 10 mm/s at sol viscosities in the range from 1.6 mPa s to 2.5 mPa s. There exists a limiting withdrawal rate corresponding to a capillary number of ca. 0.01 beyond which uniform titania films cannot be obtained. Below the limiting withdrawal rate, the coating thickness is a power function of the sol viscosity and withdrawal rate, both with an exponent of 2/3. The limiting withdrawal rate increases as the solvent evaporation rate increases and it decreases as the sol viscosity increases. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel tubular cathode for the direct methanol fuel cell (DMFC) is proposed, based on a tubular titanium mesh. A dip-coating method has been developed for its fabrication. The tubular cathode is composed of titanium mesh, a cathode diffusion layer, a catalyst layer, and a recast Nafion® film. The titanium mesh is present at the inner circumference of the diffusion layer, while the recast Nafion® film is at the outer circumference of the catalyst layer. A DMFC single cell with a 3.5 mgPt cm tubular cathode was able to perform as well, in terms of power density, as a conventional planar DMFC. A peak power density of 9 mW cm was reached under atmospheric air at 25 °C. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluid flow of the liquid phase in the sol-gel-dip-coating process for SnO(2) thin film deposition is numerically simulated. This calculation yields useful information on the velocity distribution close to the substrate, where the film is deposited. The fluid modeling is done by assuming Newtonian behavior, since the linear relation between shear stress and velocity gradient is observed. Besides, very low viscosities are used. The fluid governing equations are the Navier-Stokes in the two dimensional form, discretized by the finite difference technique. Results of optical transmittance and X-ray diffraction on films obtained from colloidal suspensions with regular viscosity, confirm the substrate base as the thickest part of the film, as inferred from the numerical simulation. In addition, as the viscosity increases, the fluid acquires more uniform velocity distribution close to the substrate, leading to more homogenous and uniform films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline ZnO thin films prepared by the sol-gel dip-coating technique were characterized by grazing incidence X-ray diffraction (GIXD), atomic force microscopy (AFM), X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS). The structures of several thin films subjected to (i) isochronous annealing at 350, 450 and 550 degrees C, and (ii) isothermal annealing at 450 degrees C during different time periods, were characterized. The studied thin films are composed of ZnO nanocrystals as revealed by analysing several GIXD patterns, from which their average sizes were determined. Thin film thickness and roughness were determined from quantitative analyses of AFM images and XR patterns. The analysis of XR patterns also yielded the average density of the studied films. Our GISAXS study indicates that the studied ZnO thin films contain nanopores with an ellipsoidal shape, and flattened along the direction normal to the substrate surface. The thin film annealed at the highest temperature, T = 550 degrees C, exhibits higher density and lower thickness and nanoporosity volume fraction, than those annealed at 350 and 450 degrees C. These results indicate that thermal annealing at the highest temperature (550 degrees C) induces a noticeable compaction effect on the structure of the studied thin films. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)