947 resultados para Compaction quality control
Resumo:
The capacity to use geologic materials (soil and rock) that are available in the surrounding environment is inherent to the human civilization and has contributed to the evolution of societies throughout the course of history. The use of these materials in the construction of structures such as houses, roads, railways or dams, stirred the improvement of socioeconomic and environmental conditions. Several reports of structural problems on embankments can be found throughout history. A considerable number of those registers can be linked to inadequate compaction, demonstrating the importance of guaranteeing a suitable quality of soil compaction. Various methodologies and specifications of compaction quality control on site of earthworks, based on the fill moisture content and dry unit weight, were developed during the 20th century. Two widely known methodologies are the conventional and nuclear techniques. The conventional methods are based on the use of the field sand cone test (or similar) and sampling of material for laboratory-based testing to evaluate the fill dry unit weight and water content. The nuclear techniques measure both parameters in the field using a nuclear density gauge. A topic under discussion in the geotechnical community, namely in Portugal, is the comparison between the accuracy of the nuclear gauge and sand cone test results for assessing the compaction and density ratio of earth fills, particularly for dams. The main purpose of this dissertation is to compare both of them. The data used were acquired during the compaction quality control operations at the Coutada/Tamujais dam trial embankment and core construction. This is a 25 m high earth dam located in Vila Velha de Rodão, Portugal. To analyse the spatial distribution of the compaction parameters (water content and compaction ratio), a 3D model was also developed. The main results achieved are discussed and finally some considerations are put forward on the suitability of both techniques to ensure fill compaction quality and on additional research to complement the conclusions obtained.
Resumo:
Compaction control using lightweight deflectometers (LWD) is currently being evaluated in several states and countries and fully implemented for pavement construction quality assurance (QA) by a few. Broader implementation has been hampered by the lack of a widely recognized standard for interpreting the load and deflection data obtained during construction QA testing. More specifically, reliable and practical procedures are required for relating these measurements to the fundamental material property—modulus—used in pavement design. This study presents a unique set of data and analyses for three different LWDs on a large-scale controlled-condition experiment. Three 4.5x4.5 m2 test pits were designed and constructed at target moisture and density conditions simulating acceptable and unacceptable construction quality. LWD testing was performed on the constructed layers along with static plate loading testing, conventional nuclear gauge moisture-density testing, and non-nuclear gravimetric and volumetric water content measurements. Additional material was collected for routine and exploratory tests in the laboratory. These included grain size distributions, soil classification, moisture-density relations, resilient modulus testing at optimum and field conditions, and an advanced experiment of LWD testing on top of the Proctor compaction mold. This unique large-scale controlled-condition experiment provides an excellent high quality resource of data that can be used by future researchers to find a rigorous, theoretically sound, and straightforward technique for standardizing LWD determination of modulus and construction QA for unbound pavement materials.
Resumo:
Longitudinal joint quality control/assurance is essential to the successful performance of asphalt pavements and it has received considerable amount of attention in recent years. The purpose of the study is to evaluate the level of compaction at the longitudinal joint and determine the effect of segregation on the longitudinal joint performance. Five paving projects with the use of traditional butt joint, infrared joint heater, edge restraint by milling and modified butt joint with the hot pinch longitudinal joint construction techniques were selected in this study. For each project, field density and permeability tests were made and cores from the pavement were obtained for in-lab permeability, air void and indirect tensile strength. Asphalt content and gradations were also obtained to determine the joint segregation. In general, this study finds that the minimum required joint density should be around 90.0% of the theoretical maximum density based on the AASHTO T166 method. The restrained-edge by milling and butt joint with the infrared heat treatment construction methods both create the joint density higher than this 90.0% limit. Traditional butt joint exhibits lower density and higher permeability than the criterion. In addition, all of the projects appear to have segregation at the longitudinal joint except for the edge-restraint by milling method.
Resumo:
Background: The present work aims at the application of the decision theory to radiological image quality control ( QC) in diagnostic routine. The main problem addressed in the framework of decision theory is to accept or reject a film lot of a radiology service. The probability of each decision of a determined set of variables was obtained from the selected films. Methods: Based on a radiology service routine a decision probability function was determined for each considered group of combination characteristics. These characteristics were related to the film quality control. These parameters were also framed in a set of 8 possibilities, resulting in 256 possible decision rules. In order to determine a general utility application function to access the decision risk, we have used a simple unique parameter called r. The payoffs chosen were: diagnostic's result (correct/incorrect), cost (high/low), and patient satisfaction (yes/no) resulting in eight possible combinations. Results: Depending on the value of r, more or less risk will occur related to the decision-making. The utility function was evaluated in order to determine the probability of a decision. The decision was made with patients or administrators' opinions from a radiology service center. Conclusion: The model is a formal quantitative approach to make a decision related to the medical imaging quality, providing an instrument to discriminate what is really necessary to accept or reject a film or a film lot. The method presented herein can help to access the risk level of an incorrect radiological diagnosis decision.
Resumo:
This paper presents a novel adaptive control scheme. with improved convergence rate, for the equalization of harmonic disturbances such as engine noise. First, modifications for improving convergence speed of the standard filtered-X LMS control are described. Equalization capabilities are then implemented, allowing the independent tuning of harmonics. Eventually, by providing the desired order vs. engine speed profiles, the pursued sound quality attributes can be achieved. The proposed control scheme is first demonstrated with a simple secondary path model and, then, experimentally validated with the aid of a vehicle mockup which is excited with engine noise. The engine excitation is provided by a real-time sound quality equivalent engine simulator. Stationary and transient engine excitations are used to assess the control performance. The results reveal that the proposed controller is capable of large order-level reductions (up to 30 dB) for stationary excitation, which allows a comfortable margin for equalization. The same holds for slow run-ups ( > 15s) thanks to the improved convergence rate. This margin, however, gets narrower with shorter run-ups (<= 10s). (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Active control solutions appear to be a feasible approach to cope with the steadily increasing requirements for noise reduction in the transportation industry. Active controllers tend to be designed with a target on the sound pressure level reduction. However, the perceived control efficiency for the occupants can be more accurately assessed if psychoacoustic metrics can be taken into account. Therefore, this paper aims to evaluate, numerically and experimentally, the effect of a feedback controller on the sound quality of a vehicle mockup excited with engine noise. The proposed simulation scheme is described and experimentally validated. The engine excitation is provided by a sound quality equivalent engine simulator, running on a real-time platform that delivers harmonic excitation in function of the driving condition. The controller performance is evaluated in terms of specific loudness and roughness. It is shown that the use of a quite simple control strategy, such as a velocity feedback, can result in satisfactory loudness reduction with slightly spread roughness, improving the overall perception of the engine sound. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A method was optimized for the analysis of omeprazole (OMZ) by ultra-high speed LC with diode array detection using a monolithic Chromolith Fast Gradient RP 18 endcapped column (50 x 2.0 mm id). The analyses were performed at 30 degrees C using a mobile phase consisting of 0.15% (v/v) trifluoroacetic acid (TFA) in water (solvent A) and 0.15% (v/v) TFA in acetonitrile (solvent B) under a linear gradient of 5 to 90% B in 1 min at a flow rate of 1.0 mL/min and detection at 220 nm. Under these conditions, OMZ retention time was approximately 0.74 min. Validation parameters, such as selectivity, linearity, precision, accuracy, and robustness, showed results within the acceptable criteria. The method developed was successfully applied to OMZ enteric-coated pellets, showing that this assay can be used in the pharmaceutical industry for routine QC analysis. Moreover, the analytical conditions established allow for the simultaneous analysis of OMZ metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in the same run, showing that this method can be extended to other matrixes with adequate procedures for sample preparation.
Resumo:
Background: The cerebrospinal fluid (CSF) biomarkers amyloid beta (A beta)-42, total-tau (T-tau), and phosphorylated-tau (P-tau) demonstrate good diagnostic accuracy for Alzheimer`s disease (AD). However, there are large variations in biomarker measurements between studies, and between and within laboratories. The Alzheimer`s Association has initiated a global quality control program to estimate and monitor variability of measurements, quantify batch-to-batch assay variations, and identify sources of variability. In this article, we present the results from the first two rounds of the program. Methods: The program is open for laboratories using commercially available kits for A beta, T-tau, or P-tau. CSF samples (aliquots of pooled CSF) are sent for analysis several times a year from the Clinical Neurochemistry Laboratory at the Molndal campus of the University of Gothenburg, Sweden. Each round consists of three quality control samples. Results: Forty laboratories participated. Twenty-six used INNOTEST enzyme-linked immunosorbent assay kits, 14 used Luminex xMAP with the INNO-BIA AlzBio3 kit (both measure A beta-(1-42), P-tau(181P), and T-tau), and 5 used Mesa Scale Discovery with the A beta triplex (A beta N-42, A beta N-40, and A beta N-38) or T-tau kits. The total coefficients of variation between the laboratories were 13% to 36%. Five laboratories analyzed the samples six times on different occasions. Within-laboratory precisions differed considerably between biomarkers within individual laboratories. Conclusions: Measurements of CSF AD biomarkers show large between-laboratory variability, likely caused by factors related to analytical procedures and the analytical kits. Standardization of laboratory procedures and efforts by kit vendors to increase kit performance might lower variability, and will likely increase the usefulness of CSF AD biomarkers. (C) 2011 The Alzheimer`s Association. All rights reserved.
Resumo:
Toxoplasma gondii causes severe disease both to man and livestock and its detection in meat after slaughtering requires PCR or biological tests. Meat packages contain retained exudate that could be used for serology due to its blood content. Similar studies reported false negative assays in those tests. We standardized an anti-T. gondii IgG ELISA in muscle juices from experimentally infected rabbits, with blood content determination by cyanhemoglobin spectrophotometry. IgG titers and immunoblotting profiles were similar in blood, serum or meat juice, after blood content correction. These assays were adequate regardless of the storage time up to 120 days or freeze-thaw cycles, without false negative results. We also found 1.35% (1/74) positive sample in commercial Brazilian rabbit meat cuts, by this assay. The blood content determination shows ELISA of meat juice may be useful for quality control for toxoplasmosis monitoring. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Previous publications have documented the damage caused to red blood cells (RBCs) irradiated with X-rays produced by a linear accelerator and with gamma rays derived from a Cs-137 source. The biologic effects on RBCs of gamma rays from a Co-60 source, however, have not been characterized. STUDY DESIGN AND METHODS: This study investigated the effect of 3000 and 4000 cGy on the in vitro properties of RBCs preserved with preservative solution and irradiated with a cobalt teletherapy unit. A thermal device equipped with a data acquisition system was used to maintain and monitor the blood temperature during irradiation. The device was rotated at 2 r.p.m. in the irradiation beam by means of an automated system. The spatial distribution of the absorbed dose over the irradiated volume was obtained with phantom and thermoluminescent dosimeters (TLDs). Levels of Hb, K+, and Cl- were assessed by spectrophotometric techniques over a period of 45 days. The change in the topology of the RBC membrane was investigated by flow cytometry. RESULTS: Irradiation caused significant changes in the extracellular levels of K+ and Hb and in the organizational structure of the phospholipid bilayer of the RBC membrane. Blood temperature ranged from 2 to 4 degrees C during irradiation. Rotation at 2 r.p.m. distributed the dose homogeneously (92%-104%) and did not damage the RBCs. CONCLUSIONS: The method used to store the blood bags during irradiation guaranteed that all damage caused to the cells was exclusively due to the action of radiation at the doses applied. It was demonstrated that prolonged storage of Co-60-irradiated RBCs results in loss of membrane phospholipids asymmetry, exposing phosphatidylserine (PS) on the cells` surface with a time and dose dependence, which can reduce the in vivo recovery of these cells. A time- and dose-dependence effect on the extracellular K+ and plasma-free Hb levels was also observed. The magnitude of all these effects, however, seems not to be clinically important and can support the storage of irradiated RBC units for at last 28 days.
Resumo:
Introduction: Paper and thin layer chromatography methods are frequently used in Classic Nuclear Medicine for the determination of radiochemical purity (RCP) on radiopharmaceutical preparations. An aliquot of the radiopharmaceutical to be tested is spotted at the origin of a chromatographic strip (stationary phase), which in turn is placed in a chromatographic chamber in order to separate and quantify radiochemical species present in the radiopharmaceutical preparation. There are several methods for the RCP measurement, based on the use of equipment as dose calibrators, well scintillation counters, radiochromatografic scanners and gamma cameras. The purpose of this study was to compare these quantification methods for the determination of RCP. Material and Methods: 99mTc-Tetrofosmin and 99mTc-HDP are the radiopharmaceuticals chosen to serve as the basis for this study. For the determination of RCP of 99mTc-Tetrofosmin we used ITLC-SG (2.5 x 10 cm) and 2-butanone (99mTc-tetrofosmin Rf = 0.55, 99mTcO4- Rf = 1.0, other labeled impurities 99mTc-RH RF = 0.0). For the determination of RCP of 99mTc-HDP, Whatman 31ET and acetone was used (99mTc-HDP Rf = 0.0, 99mTcO4- Rf = 1.0, other labeled impurities RF = 0.0). After the development of the solvent front, the strips were allowed to dry and then imaged on the gamma camera (256x256 matrix; zoom 2; LEHR parallel-hole collimator; 5-minute image) and on the radiochromatogram scanner. Then, strips were cut in Rf 0.8 in the case of 99mTc-tetrofosmin and Rf 0.5 in the case of 99mTc-HDP. The resultant pieces were smashed in an assay tube (to minimize the effect of counting geometry) and counted in the dose calibrator and in the well scintillation counter (during 1 minute). The RCP was calculated using the formula: % 99mTc-Complex = [(99mTc-Complex) / (Total amount of 99mTc-labeled species)] x 100. Statistical analysis was done using the test of hypotheses for the difference between means in independent samples. Results:The gamma camera based method demonstrated higher operator-dependency (especially concerning the drawing of the ROIs) and the measures obtained using the dose calibrator are very sensitive to the amount of activity spotted in the chromatographic strip, so the use of a minimum of 3.7 MBq activity is essential to minimize quantification errors. Radiochromatographic scanner and well scintillation counter showed concordant results and demonstrated the higher level of precision. Conclusions: Radiochromatographic scanners and well scintillation counters based methods demonstrate to be the most accurate and less operator-dependant methods.
Resumo:
Objectives - Review available guidance for quality assurance (QA) in mammography and discuss its contribution to harmonise practices worldwide. Methods - Literature search was performed on different sources to identify guidance documents for QA in mammography available worldwide in international bodies, healthcare providers, professional/scientific associations. The guidance documents identified were reviewed and a selection was compared for type of guidance (clinical/technical), technology and proposed QA methodologies focusing on dose and image quality (IQ) performance assessment. Results - Fourteen protocols (targeted at conventional and digital mammography) were reviewed. All included recommendations for testing acquisition, processing and display systems associated with mammographic equipment. All guidance reviewed highlighted the importance of dose assessment and testing the Automatic Exposure Control (AEC) system. Recommended tests for assessment of IQ showed variations in the proposed methodologies. Recommended testing focused on assessment of low-contrast detection, spatial resolution and noise. QC of image display is recommended following the American Association of Physicists in Medicine guidelines. Conclusions - The existing QA guidance for mammography is derived from key documents (American College of Radiology and European Union guidelines) and proposes similar tests despite the variations in detail and methodologies. Studies reported on QA data should provide detail on experimental technique to allow robust data comparison. Countries aiming to implement a mammography/QA program may select/prioritise the tests depending on available technology and resources.
Resumo:
Electroanalytical methods based on square-wave adsorptive-stripping voltammetry (SWAdSV) and flow-injection analysis with square-wave adsorptive-stripping voltammetric detection (FIA-SWAdSV) were developed for the determination of fluoxetine (FXT). The methods were based on the reduction of FXT at a mercury drop electrode at -1.2 V versus Ag/AgCl, in a phosphate buffer of pH 12.0, and on the possibility of accumulating the compound at the electrode surface. The SWAdSV method was successfully applied in the quantification of FXT in pharmaceutical products, human serum samples, and in drug dissolution studies. Because the presence of dissolved oxygen did not interfere significantly with the analysis, it was possible to quantify FXT in several pharmaceutical products using FIA-SWAdSV. This method enables analysis of up to 120 samples per hour at reduced costs.