940 resultados para Coffee hulls
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Foram estudados os efeitos da adição de 15% de diferentes aditivos - casca de café, farelo de cacau e farelo de mandioca - à forragem verde de capim-elefante (peso/peso), no momento da ensilagem, sobre a digestibilidade aparente de dietas. Foram usados 20 ovinos machos, não castrados, com média de 22,27±3,24kg de peso corporal, em um delineamento inteiramente ao acaso, com quatro tratamentos e cinco repetições. Os tratamentos foram: T1 = capim-elefante ensilado sem aditivo; T2 = capim-elefante ensilado com 15% de casca de café; T3 = capim-elefante ensilado com 15% de farelo de cacau; T4 = capim-elefante ensilado com 15% de farelo de mandioca. Os animais receberam dieta isoproteica (10% de proteína bruta) em proporção de 60% de volumoso e 40% de concentrado, na base da matéria seca. Utilizou-se o método de coleta total de fezes durante sete dias. Os coeficientes de digestibilidade aparente da matéria seca, proteína bruta, fibra em detergente neutro e fibra em detergente ácido e de digestibilidade verdadeira da proteína bruta foram maiores no capim-elefante ensilado sem aditivo. O coeficiente de digestibilidade do extrato etéreo foi mais alto na silagem sem aditivo e na silagem com farelo de cacau. Os coeficientes de digestibilidade da matéria orgânica e dos carboidratos totais foram mais elevados na silagem sem aditivo e na silagem com farelo de mandioca. Os maiores valores de nutrientes digestíveis totais foram observados nas dietas que continham silagem sem aditivo e silagem com farelo de mandioca. A silagem de capim-elefante com 15% de farelo de mandioca, bem como a silagem sem aditivo apresentaram melhor digestibilidade dos nutrientes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study investigated Nrf2-activating properties of a coffee blend combining raw coffee bean constituents with 5-O-caffeoylquinic acid (CGA) as a lead component with typical roasting products such as N-methylpyridinium (NMP). In cell culture (HT29) the respective coffee extract (CN-CE) increased nuclear Nrf2 translocation and enhanced the transcription of ARE-dependent genes as exemplified for NAD(P)H:quinone oxidoreductase and glutathione-S-transferase (GST)A1, reflected in the protein level by an increase in GST enzyme activity. In a pilot human intervention study (29 healthy volunteers), daily consumption of 750 mL of CN-coffee for 4 weeks increased Nrf2 transcription in peripheral blood lymphocytes on average. However, the transcriptional response pattern of Nrf2/ARE-dependent genes showed substantial interindividual variations. The presence of SNPs in the Nrf2-promoter, reported recently, as well as the detection of GSTT1*0 (null) genotypes in the study collective strengthens the hypothesis that coffee acts as a modulator of Nrf2-dependent gene response in humans, but genetic polymorphisms play an important role in the individual response pattern.
Resumo:
The Nrf2/ARE pathway is a major cellular defense mechanism that prevents damage by reactive oxygen species through induction of antioxidative phase II enzymes. However, the activity of the Nrf2/ARE system is not uniform with variability in response presumed to be dependent on the Nrf2 genotype. We recently completed a pilot human coffee intervention trial with healthy humans, where large interindividual differences in the antioxidative response to the study coffee were examined. Here, we address the question whether differences in the modulation of Nrf2 gene transcription, assessed as an induction of Nrf2 gene transcription by Q-PCR, might be correlated with specific Nrf2 genotypes. To date, nine single nucleotide polymorphisms (SNPs) have been identified in the Nrf2 (NFE2L2) gene. Two of these, the -617C/A and -651G/A SNPs are located within the promoter region and have previously been reported to influence the activity of the Nrf2/ARE pathway by reducing Nrf2 transcriptional activity. Sequencing of the critical Nrf2 gene promoter region not only confirmed the existence of these SNPs within the participants of the trial at the expected frequency (33% carrying the -617C/A, 17% the -651G/A and 56% the -653A/G SNP) but also indicated reduced Nrf2 gene transcription associated with a normal diet if the SNPs at position -617, -651 or -653 were present. Of note, the data also indicated the study coffee increased Nrf2 gene transcription even in SNP carriers. This further highlights the relevance of genotype-dependent induction of Nrf2 gene transcription that appears to be largely influenced by dietary factors.
Resumo:
In a human intervention study comprising 49 healthy participants, coffee combining natural green coffee bean constituents and dark roast products was identified as a genotype-dependent inducer of Nrf2, significantly affecting Nrf2 gene expression and downstream transcription. Specifically, with 65% of participants showing ≥1.5 fold increase in Nrf2-transcription, the presence of the -651G/A SNP in the Nrf2 gene in conjunction with heterozygosity of the 6/7 AT repeat sequence in the UGT1A1 gene significantly down-regulated coffee-mediated gene expression. Considering the role of the Nrf/ARE pathway in the regulation of antioxidative and chemopreventive phase II efficacy, individual genotype must be considered when examining the potency of bioactive food/food constituents and therapeutic potential.
Resumo:
Coffee is one of the most widely consumed beverages in the world and has a number of potential health benefits. Coffee may influence energy expenditure and energy intake, which in turn may affect body weight. However, the influence of coffee and its constituents – particularly caffeine – on appetite remains largely unexplored. The objective of this study was to examine the impact of coffee consumption (with and without caffeine) on appetite sensations, energy intake, gastric emptying, and plasma glucose between breakfast and lunch meals. In a double-blind, randomised crossover design. Participants (n = 12, 9 women; Mean ± SD age and BMI: 26.3 ± 6.3 y and 22.7 ± 2.2 kg•m−2) completed 4 trials: placebo (PLA), decaffeinated coffee (DECAF), caffeine (CAF), and caffeine with decaffeinated coffee (COF). Participants were given a standardised breakfast labelled with 13C-octanoic acid and 225 mL of treatment beverage and a capsule containing either caffeine or placebo. Two hours later, another 225 mL of the treatment beverage and capsule was administered. Four and a half hours after breakfast, participants were given access to an ad libitum meal for determination of energy intake. Between meals, participants provided exhaled breath samples for determination of gastric emptying; venous blood and appetite sensations. Energy intake was not significantly different between the trials (Means ± SD, p > 0.05; Placebo: 2118 ± 663 kJ; Decaf: 2128 ± 739 kJ; Caffeine: 2287 ± 649 kJ; Coffee: 2016 ± 750 kJ); Other than main effects of time (p < 0.05), no significant differences were detected for appetite sensations or plasma glucose between treatments (p > 0.05). Gastric emptying was not significantly different across trials (p > 0.05). No significant effects of decaffeinated coffee, caffeine or their combination were detected. However, the consumption of caffeine and/or coffee for regulation of energy balance over longer periods of time warrant further investigation.
Resumo:
The coffee components kahweol and cafestol (K/C) have been reported to protect the colon and other organs of the rat against the formation of DNA adducts by 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) and aflatoxin B1. PhIP is a cooked-food mutagen to which significant human exposure and a role in colon cancer etiology are attributed, and, interestingly, such cancers appear to develop at a lower rate in consumers of coffees with high amounts of K/C. Earlier studies in rodent liver have shown that a key role in the chemopreventive effect of K/C is likely to be due to the potential of these compounds to induce the detoxification of xenobiotics by glutathione transferase (GST) and to enhance the synthesis of the corresponding co-factor glutathione. However, mutagens like PhIP may also be detoxified by UDP-glucuronosyl transferase (UDPGT) for which data are lacking regarding a potential effect of K/C. Therefore, in the present study, we investigated the effect of K/C on UDPGT and, concomitantly, we studied overall GST and the pattern of individual GST classes, particularly GST-θ, which was not included in earlier experiments. In addition, we analyzed the organ-dependence of these potentially chemopreventive effects. K/C was fed to male F344 rats at 0.122% in the chow for 10 days. Enzyme activities in liver, kidney, lung, colon, salivary gland, pancreas, testis, heart and spleen were quantified using five characteristic substrates and the hepatic protein pattern of GST classes α, μ, and π was studied with affnity chromatography/HPLC. Our study showed that K/C is not only capable of increasing overall GST and GST classes α, μ, and π but also of enhancing UDGPT and GST-θ. All investigated K/C effects were strongest in liver and kidney, and some response was seen in lung and colon but none in the other organs. In summary, our results show that K/C treatment leads to a wide spectrum of increases in phase II detoxification enzymes. Notably, these effects occurred preferentially in the well perfused organs liver and kidney, which may thus not only contribute to local protection but also to anti-carcinogenesis in distant, less stimulated organs such as the colon.
Resumo:
Scope: Coffee is among the most frequently consumed beverages. Its consumption is inversely associated to the incidence of diseases related to reactive oxygen species; the phenomenon may be due to its antioxidant properties. Our primary objective was to investigate the impact of consumption of a coffee containing high levels of chlorogenic acids on the oxidation of proteins, DNA and membrane lipids; additionally, other redox biomarkers were monitored in an intervention trial. Methods and results: The treatment group (n=36) consumed instant coffee co-extracted from green and roasted beans, whereas the control consumed water (800 mL/P/day, 5 days). A global statistical analysis of four main biomarkers selected as primary outcomes showed that the overall changes are significant. 8-Isoprostaglandin F2α in urine declined by 15.3%, 3-nitrotyrosine was decreased by 16.1%, DNA migration due to oxidized purines and pyrimidines was (not significantly) reduced in lymphocytes by 12.5 and 14.1%. Other markers such as the total antioxidant capacity were moderately increased; e.g. LDL and malondialdehyde were shifted towards a non-significant reduction. Conclusion: The oxidation of DNA, lipids and proteins associated with the incidence of various diseases and the protection against their oxidative damage may be indicative for beneficial health effects of coffee.
Resumo:
In 2002, Phillip Di Bella’s childhood passion for coffee and keen entrepreneurial spirit led him to establish a small coffee roasting warehouse in in the inner suburbs of Brisbane (Di Bella, 2012). With a keen sense of direction and passion for his coffee products and providing unparalleled customer service, Di Bella Coffee quickly grew to become a key player in the coffee roasting scene. This passion for the ultimate coffee experience is evident in the firm’s logo ‘Di Bella Coffee Inspires Passion’. Phillip Di Bella stated that ‘the common denominator of this company is about inspiration and passion. We are not a coffee company, we are a people company. You know, are we inspiring you from the moment you walk in the door to the moment you leave. If you are not feeling inspired then we haven’t done our job properly as a company’. Fundamentally, providing the ultimate coffee experience, as detailed in the following case is one in which focuses on the coffee consumption experience, not the coffee itself. Over that last 10 years Di Bella Coffee has constantly strived for the ultimate coffee, while expanding business operations into the booming Asian coffee market, establishing headquarters in Shanghai in 2010. In 2011, Di Bella Coffee commenced their second international venture with the launch of operations in India (Di Bella Coffee, 2012); followed shortly by the creation of a new category of coffee, set to revolutionise to coffee industry. The fusion of two traditional forms of coffee; espresso coffee and instant coffee, to create a third category- espresso instant, led to the development of TORQ by Di Bella.
Resumo:
Type 2 diabetes is one of the diseases that largely determined by lifestyle factors. Coffee is one of the most consumed beverages in the world and recently released data suggest the effects of coffee consumption on type 2 diabetes. The objective of the present study was to evaluate the effects of habitual coffee consumption on various aspects of type 2 diabetes and its most common complications. This study is part of the national FINRISK studies. Baseline surveys were carried out between 1972 and 1997. The surveys covered two eastern regions in 1972 and 1977, but were expanded to include a third region in southwestern Finland in 1982, 1987, 1992, and 1997. The Helsinki capital area was included in the survey in 1992 and 1997 and the Oulu province, in northern Finland, in 1997. Each survey was drawn from an independent random sample of the national register of subjects aged 25-64. In 1997, an additional sample of subjects aged 65-74 was conducted. The blood pressure, weight, and height of subjects were measured. By using self-administered questionnaires data were collected on medical history, socioeconomic factors, physical activity, smoking habits, and alcohol, coffee, and tea consumption. Higher coffee consumption was associated with higher body mass index, occupational physical activity and cigarette smoking, and lower blood pressure, education level, leisure time physical activity, tea consumption and alcohol use. Age, body mass index, systolic blood pressure and current smoking were positively associated with the risk of type 2 diabetes, however, education, and occupational, commuting and leisure time physical activity were inversely associated. The significant inverse association between coffee consumption and the risk of type 2 diabetes was found in both sexes but the association was stronger in women. Coffee consumption was significantly and inversely associated with fasting glucose, 2-hour plasma glucose, fasting insulin, impaired fasting glucose, impaired glucose regulation, and hyperinsulinemia among both men and women and with isolated impaired glucose tolerance among women. Serum gamma-glutamyltransferase modified the association between coffee consumption and incident diabetes. Among subjects with high serum -glutamyltransferase (>75th percentile), coffee consumption showed an inverse association for women, as well as men and women combined. An inverse association also occurred between coffee consumption and the risk of total, cardiovascular disease, and coronary heart disease mortality among patients with type 2 diabetes. The results of this study showed that habitual coffee consumption may be associated with a reduced risk of type 2 diabetes. Coffee consumption may have some effects on several markers of glycemia, and may lower the incident of type 2 diabetes in high normal serum -glutamyltransferase levels. Total, cardiovascular disease, and coronary heart disease mortality rate among subjects with type 2 diabetes may also be reduced by coffee consumption.
Resumo:
For the consumer, flavor is arguably the most important aspect of a good coffee. Coffee flavor is extremely complex and arises from numerous chemical, biological and physical influences of cultivar, coffee cherry maturity, geographical growing location, production, processing, roasting and cup preparation. Not surprisingly there is a large volume of research published detailing the volatile and non-volatile compounds in coffee and that are likely to be playing a role in coffee flavor. Further, there is much published on the sensory properties of coffee. Nevertheless, the link between flavor components and the sensory properties expressed in the complex matrix of coffee is yet to be fully understood. This paper provides an overview of the chemical components that are thought to be involved in the flavor and sensory quality of Arabica coffee.
Resumo:
In a human intervention trial, a coffee, combining nature green coffee bean constituents and dark roast products was studied towards its potential to activate the Nrf2/ARE-pathway in PBLs. The study coffee was identified as a strong inducer of Nrf2 and downstream GST1A1 and UGT1A1 gene transcription. However, the response of the participants was found to depend on the respective genotype. The -651 SNP in the Nrf2 gene as well as the heterozygote 6/7 sequence in the UGT1A1 gene significantly down-regulated the susceptibility to respond to coffee, proposing the existing genotype to be critical for the response to the coffee.
Resumo:
The potential to remove chromium(VI) from aqueous solutions through biosorption using coffee husk was investigated. The effects of pH, contact time, initial concentration and adsorbent dosage on the adsorption of Cr(VI) were studied. The data obeyed Langmuir and Freundlich adsorption isotherms. The Langmuir adsorption capacity was found to be 44.95 mg/g. The Freundlich constants K-f and n were 1.027 mg/g (litre/mg)(n)] and 1.493, respectively. Desorption studies indicated the removal of 60% of the hexavalent chromium. Infrared spectral studies revealed the presence of functional groups, such as hydroxyl and carboxyl groups, on the surface of the biomass, which facilitates biosorption of Cr(VI).