24 resultados para CYCLAM
Resumo:
Chemical reactivity, photolability, and computational studies of the ruthenium nitrosyl complex with a substituted cyclam, fac-[Ru(NO)Cl(2)(kappa(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl center dot H(2)O ((1-carboxypropyl) cyclam = 3-(1,4,8,11-tetraazacyclotetradecan-1-yl) propionic acid)), (I) are described. Chloride ligands do not undergo aquation reactions (at 25 degrees C, pH 3). The rate of nitric oxide (NO) dissociation (k(obs-NO)) upon reduction of I is 2.8 s(-1) at 25 +/- 1 degrees C (in 0.5 mol L(-1) HCl), which is close to the highest value found for related complexes. The uncoordinated carboxyl of I has a pK(a) of similar to 3.3, which is close to that of the carboxyl of the non coordinated (1-carboxypropyl) cyclam (pK(a) = 3.4). Two additional pK(a) values were found for I at similar to 8.0 and similar to 11.5. Upon electrochemical reduction or under irradiation with light (lambda(irr) = 350 or 520 nm; pH 7.4), I releases NO in aqueous solution. The cyclam ring N bound to the carboxypropyl group is not coordinated, resulting in a fac configuration that affects the properties and chemical reactivities of I, especially as NO donor, compared with analogous trans complexes. Among the computational models tested, the B3LYP/ECP28MDF, cc-pVDZ resulted in smaller errors for the geometry of I. The computational data helped clarify the experimental acid-base equilibria and indicated the most favourable site for the second deprotonation, which follows that of the carboxyl group. Furthermore, it showed that by changing the pH it is possible to modulate the electron density of I with deprotonation. The calculated NO bond length and the Ru/NO charge ratio indicated that the predominant canonical structure is [Ru(III)NO], but the Ru-NO bond angles and bond index (b.i.) values were less clear; the angles suggested that [Ru(II)NO(+)] could contribute to the electronic structure of I and b.i. values indicated a contribution from [Ru(IV)NO(-)]. Considering that some experimental data are consistent with a [Ru(II)NO(+)] description, while others are in agreement with [Ru(III)NO], the best description for I would be a linear combination of the three canonical forms, with a higher weight for [Ru(II)NO(+)] and [Ru(III)NO].
Resumo:
A series of crown ether appended macrocyclic amines has been prepared comprising benzo-12-crown-4, benzo-15-crown-5, or benzo-18-crown-6 attached to a diamino-substituted cyclam. The Co-III complexes of these three receptors have been prepared and characterized spectroscopically and structurally. Crystal structures of each receptor in complex with an alkali metal ion and structures of the benzo-12-crown-4 and benzo-15-crown-5-receptors without guest ions are reported. 2D NMR and molecular mechanics modeling have been used to examine conformational variations upon guest ion complexation. Addition of cations to these receptors results in an appreciable anodic shift in the Co-III:II 11 redox potential, even in aqueous solution, but little cation selectivity is observed. Evidence for complex formation has been corroborated by Na-23 and Li-7 NMR spectroscopy and electrospray mass spectrometry.
Resumo:
A series of the most common chelators used in magnetic resonance imaging ( MRI) and in radiopharmaceuticals for medical diagnosis and tumour therapy, H(4)dota, H(4)teta, H(8)dotp and H(8)tetp, is examined from a chemical point of view. Differences between 12- and 14-membered tetraazamacrocyclic derivatives with methylcarboxylate and methylphosphonate pendant arms and their chelates with divalent first-series transition metal and trivalent lanthanide ions are discussed on the basis of their thermodynamic stability constants, X- ray structures and theoretical studies.
Resumo:
The ligands 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic-11-methylphosphonic acid (H(5)te3a1p) and 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic acid (H(3)te3a) were synthesized, the former one for the first time. The syntheses of these ligands were achieved from reactions on 1,4,8,11-tetraazacyclotetradecane-1,4,8-tris( carbamoylmethyl) hydroiodide (te3am center dot HI), and compounds (Hte3am)(+), 1, and (H(7)te3a1p)(2+), 4, were characterized by X-ray diffraction. Structures of two other compounds resulting from side-reactions, (H(2)te2lac)(2+), 2, and (H(4)te2a2p(OEt2))(2+), 3, were also determined by X-ray diffraction. Potentiometric titrations of H(5)te3a1p and H(3)te3a were performed at 298.2 K and ionic strength 0.10 mol dm(-3) in NMe4NO3 to determine their protonation constants. H-1 and P-31 NMR titrations of H(5)te3a1p were carried out in order to determine the very high first protonation constant of this ligand and to elucidate the sequence of protonation. Potentiometric studies of the two ligands with Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ metal ions performed in the same experimental conditions showed that the complexes of H5te3a1p present very high thermodynamic stability while complexes of H(3)te3a, particularly Co2+ and Zn2+, are even more stable. P-31 NMR spectra of the cadmium(II) complex of H(5)te3a1p showed that the phosphonate moiety was coordinated to the metal ion. The UV-vis-NIR spectroscopic data and magnetic moment values of Co2+ and Ni2+ complexes of H(5)te3a1p and H(3)te3a together with the EPR of the corresponding Cu2+ complexes indicated that all these complexes adopt distorted octahedral coordination geometries in solution. This was confirmed by the single crystal structure of [Cu-2(Hte3a)(H2O)(3)Cl]Cl-0.5(ClO4)(0.5) center dot 2H(2)O that showed two distorted octahedral copper centres bridged by a N-acetate pendant arm with a Cu center dot center dot center dot Cu distance of 4.890(1) angstrom. The first one is encapsulated into the macrocyclic cavity surrounded by four nitrogen and two oxygen donors from the macrocycle, whereas the second one is on the periphery of the macrocycle and is coordinated to two oxygen atoms of one acetate pendant arm in chelating fashion, one chloride and three water molecules.
Resumo:
In this work were synthesized and studied the spectroscopic and electrochemical characteristics of the coordination compounds trans-[Co (cyclam)Cl2]Cl, trans- Na[Co(cyclam)(tios)2], trans-[Co(en)2Cl2]Cl and trans-Na[Co(en)2(tios)2], where tios = thiosulfate and en = ethylenediamine. The compounds were characterized by: Elemental Analysis (CHN), Absorption Spectroscopy in the Infrared (IR), Uv-Visible Absorption Spectroscopy, Luminescence Spectroscopy and Electrochemistry (cyclic voltammetry). Elemental Analysis (CHN) suggests the following structures for the complex: trans- [Co(cyclam)Cl2]Cl.6H2O and trans-Na[Co(cyclam)(tios)2].7H2O. The electrochemical analysis, when compared the cathodic potential (Ec) processes of the complexes trans- [Co(cyclam)Cl2]Cl and trans-[Co(en)2Cl2]Cl, indicated a more negative value (-655 mV) for the second complex, suggesting a greater electron donation to the metal center in this complex which can be attributed to a greater proximity of the nitrogen atoms of ethylenediamine in relation to metal-nitrogen cyclam. Due to the effect of setting macrocyclic ring to the metal center, the metal-nitrogen bound in the cyclam are not as close as the ethylenediamine, this fact became these two ligands different. Similar behavior is also observed for complexes in which the chlorides are replaced by thiosulfate ligand, trans-Na[Co(en)2(tios)2] (-640 mV) and trans-Na[Co(cyclam)(tios)2] (-376 mV). In absorption spectroscopy in the UV-visible, there is the band of charge transfer LMCT (ligand p d* the metal) in the trans-Na[Co(cyclam)(tios)2] (350 nm, p tios d* Co3+) and in the trans-Na[Co(en)2(tios)2] (333 nm, p tios d* Co3+), that present higher wavelength compared to complex precursor trans- [Co(cyclam)Cl2]Cl (318 nm, pCl d* Co3+), indicating a facility of electron density transfer for the metal in the complex with the thiosulfate ligand. The infrared analysis showed the coordination of the thiosulfate ligand to the metal by bands in the region (620-635 cm-1), features that prove the monodentate coordination via the sulfur atom. The νN-H bands of the complexes with ethylenediamine are (3283 and 3267 cm-1) and the complex with cyclam bands are (3213 and 3133 cm-1). The luminescence spectrum of the trans-Na[Co(cyclam)(tios)2] present charge transfer band at 397 nm and bands dd at 438, 450, 467, 481 and 492 nm.
Kinetics and mechanism of the induced redox reaction of [Ni(cyclam)](2+) promoted by SO5 center dot-
Resumo:
Oxidation of [Ni(cyclam)](2+), cyclam = 1,4,8,11-tetraazacyclotetradecane, accelerated by sulfur dioxide, was studied spectrophotometrically by following the formation of [Ni(cyclam)](3+) under the conditions: [Ni(cyclam)](2+) = 6.0 x 10(-3) M; initial [Ni(cyclam)](3+) = 8.0 x 10(-6) M; [cyclam] = 6.0 x 10(-3) M; [SO2] = (1.0-5.0) x 10(-4) M and 1.0 M perchloric acid in oxygen saturated solutions at 25.0 degrees C and ionic strength = 1.0 M. The oxidation reaction exhibits autocatalytic behavior in which the induction period depends on the initial Ni(III) concentration. A kinetic study of the reduction of Ni(III) by SO2 under anaerobic conditions, and the oxidation of Ni(II), showed that the rate-determining step involves reduction of Ni(III) by SO2 to produce the SO3.- radical, which rapidly reacts with dissolved oxygen to produce SO5.- and rapidly oxidizes Ni(II). The results clearly show a redox cycling process which depends on the balance of SO2 and oxygen concentrations in solution.
Resumo:
The autoxidation of [Ni-II(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) and Ni(II)tetraglycine, accelerated by S-IV is studied spectrophotometrically by following the formation of Ni-III complexes.
Resumo:
The cis to trans isomerizations during the syntheses of trans-[Ru(NO)(OH)(cyclam)](PF6)(2), from cis-[RuCl2 (cyclam)]Cl, and [Ru(NO)Cl(cyclam)] (PF6)(2), from cis-[RuCl2(dmso)(4)], are reported. The novel trans-[Ru(NO) (OH)(cyclam)](PF6)(2) complex was characterized by X-ray crystallography and vibrational infrared and nuclear magnetic resonance spectroscopies. The Ru-N-O bond angle (176.75 degrees) and v( NO) (1835 cm(-1)) suggest a nitrosonium character for this hydroxo complex. The crystal and molecular structure of trans-[Ru(NO)Cl(cyclam)] (ClO4)(2)center dot 2 H2O is also reported. Results presented here support the cis-trans isomerization observed for the first time with ruthenium cyclam complexes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Enforcement of chirality upon a macrocyclic tetramine ligand structure by the introduction of an asymmetric pendent arm which does not significantly modify the macrocycle conformation has no significant effect upon the geometry of the coordination sphere of a bound metal. Where substitution engendering chirality does cause a change in the ligand conformation, in particular for a ligand of restricted stereochemistry, these effects can be much greater. Thus, conversion of 3,7-diazacycloheptane to a macrocycle via attachment of chiral sidearms and ring closure through a template reaction leads to cyclam derivatives with unusual coordination properties. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The emission from two photoactive 14-membered macrocyclic ligands, 6-((naphthalen-1-ylmethyl)-amino)trans-6,13-dimethyl- 13-amino- 1,4,8,11 -tetraaza-cyclotetradecane (L-1) and 6-((anthracen-9-ylmethyl)-amino)trans-6,13 -dimethyl - 13 -amino- 1,4,8, 1 1-tetraaza-cyclotetradecane (L-2) is strongly quenched by a photoinduced electron transfer (PET) mechanism involving amine lone pairs as electron donors. Time-correlated single photon counting (TCSPC), multiplex transient grating (TG), and fluorescence upconversion (FU) measurements were performed to characterize this quenching mechanism. Upon complexation with the redox inactive metal ion, Zn(II), the emission of the ligands is dramatically altered, with a significant increase in the fluorescence quantum yields due to coordination-induced deactivation of the macrocyclic amine lone pair electron donors. For [ZnL2](2+), the substituted exocyclic amine nitrogen, which is not coordinated to the metal ion, does not quench the fluorescence due to an inductive effect of the proximal divalent metal ion that raises the ionization potential. However, for [ZnL1](2+), the naphthalene chromophore is a sufficiently strong excited-state oxidant for PET quenching to occur.
Resumo:
Photolysis of the nitrato chromium(III) tetraphenylporphyrinato compound Cr(TPP)(NO(3)) (TPP, tetraphenylporphyrin) in toluene solution clearly leads to the formation of the Cr(IV) oxo complex Cr(TPP)(O) with a quantum yield of 0.011. The other product, NO(2), was detected quantitatively by its reaction with the spin trapping agent 2,2,6,6-tetramethyl-piperidine-1-oxyl.
Resumo:
The macrocyclic cobalt hexaamines [Co(trans-diammac)](3+) and [Co(cis-diammac)](3+) (diammac = 6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) are capable of reducing the overpotential for hydrogen evolution on a mercury cathode in aqueous solution. Protons are reduced in a catalytic process involving reoxidation of the Co-II species to its parent Co-III complex. The cycle is robust at neutral pH with no decomposition of catalyst. The stability of the [Co(trans-diammac)](2+) and [Co(cis-diammac)](2+) complexes depends on the pH of the solution and the coordinating properties of the supporting electrolyte. Electrochemical studies indicate that the adsorbed Co-II complex on the surface of mercury is the active catalyst for the reduction of protons to dihydrogen.
Resumo:
The isolation and characterisation of a new macrocyclic hexaamine trans-6,13-bis(ferrocenylmethylamino)-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane (L-2) bearing two ferrocenyl groups appended to its exocyclic amines is reported. The crystal structures of L-2 and its dihydrochloride salt L-2. 2HCl . 2H(2)O have been determined. In the latter case cation-anion hydrogen bonding is observed in the solid state. Substrate binding by the electroactive L-2 in MeCN-CH2Cl2 solution has been examined by cyclic voltammetry and reveals the receptor electrochemically to recognise benzoate and chloride anions. The macrocyclic N-donors may also bind transition metal cations such as Cu-II and Zn-II.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica - Ramo de Bioprocessos
Resumo:
An alternative synthetic approach to yield the compound 2,3,5,6,8,9,11,14-octahydrobenzo[1][ 1,4,7,10]tetraazacyclotetradecine (bz[14]N-4) is presented. The protonation constants of bz[14]N-4 and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+, Pb2+ were determined in H2O at 25degreesC with ionic strength 0.10 mol dm(-3) in KNO3 and they were compared with structurally related macrocycles cyclam (1,4,8,11-tetraazacyclotetradecane) and cyclen (1,4,7,10-tetraazacyclododecane). These studies indicate that only 1 : 1 ( M : L) species are formed in solution, and the ligand exhibits a high affinity for larger ions such as Cd2+ and Pb2+. The X-ray study of [bz[14]N4H3](3+) shows that an inclusion compound with a chloride counter-anion is formed through NH...Cl hydrogen bonds. Spectroscopic data in solution ( electronic and NMR spectra) showed that the macrocycle adopts a planar arrangement upon metal complexation. Molecular mechanics calculations reveal that in spite of the presence of the benzene ring in the macrocyclic framework this ligand can encapsulate metal ions with different stereo-electronic sizes in square planar arrangements. Our results indicate that the presence of the benzene ring in the backbone of the bz[14]N-4 confers a coordination behaviour intermediate between that of cyclam and cyclen.