10 resultados para COMMUTATIVITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a dynamical system defined by a singular Lagrangian, canonical Noether symmetries are characterized in terms of their commutation relations with the evolution operators of Lagrangian and Hamiltonian formalisms. Separate characterizations are given in phase space, in velocity space, and through an evolution operator that links both spaces. 2000 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field quantization in unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes. We define non-Hermitean modes and their adjoints in both the cavity and external regions and make use of the important bi-orthogonality relationships that exist within each mode set. We employ a standard canonical quantization procedure involving the introduction of generalized coordinates and momenta for the electromagnetic (EM) field. Three-dimensional systems are treated, making use of the paraxial and monochromaticity approximations for the cavity non-Hermitean modes. We show that the quantum EM field is equivalent to a set of quantum harmonic oscillators (QHOs), associated with either the cavity or the external region non-Hermitean modes, and thus confirming the validity of the photon model in unstable optical systems. Unlike in the conventional (Hermitean mode) case, the annihilation and creation operators we define for each QHO are not Hermitean adjoints. It is shown that the quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which can be expressed as a sum of independent QHO Hamiltonians for each non-Hermitean mode, except that the external field Hamiltonian also includes a coupling term responsible for external non-Hermitean mode photon exchange processes. The non-commutativity of certain cavity and external region annihilation and creation operators is associated with cavity energy gain and loss processes, and may be described in terms of surface integrals involving cavity and external region non-Hermitean mode functions on the cavity-external region boundary. Using the essential states approach and the rotating wave approximation, our results are applied to the spontaneous decay of a two-level atom inside an unstable cavity. We find that atomic transitions leading to cavity non-Hermitean mode photon absorption are associated with a different coupling constant to that for transitions leading to photon emission, a feature consequent on the use of non-Hermitean mode functions. We show that under certain conditions the spontaneous decay rate is enhanced by the Petermann factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let L be an RA loop, that is, a loop whose loop ring over any coefficient ring R is an alternative, but not associative, ring. Let l bar right arrow l(theta) denote an involution on L and extend it linearly to the loop ring RL. An element alpha is an element of RL is symmetric if alpha(theta) = alpha and skew-symmetric if alpha(theta) = -alpha. In this paper, we show that there exists an involution making the symmetric elements of RL commute if and only if the characteristic of R is 2 or theta is the canonical involution on L, and an involution making the skew-symmetric elements of RL commute if and only if the characteristic of R is 2 or 4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let R be a commutative ring, G a group and RG its group ring. Let phi : RG -> RG denote the R-linear extension of an involution phi defined on G. An element x in RG is said to be phi-antisymmetric if phi(x) = -x. A characterization is given of when the phi-antisymmetric elements of RG commute. This is a completion of earlier work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider locally nilpotent subgroups of units in basic tiled rings A, over local rings O which satisfy a weak commutativity condition. Tiled rings are generalizations of both tiled orders and incidence rings. If, in addition, O is Artinian then we give a complete description of the maximal locally nilpotent subgroups of the unit group of A up to conjugacy. All of them are both nilpotent and maximal Engel. This generalizes our description of such subgroups of upper-triangular matrices over O given in M. Dokuchaev, V. Kirichenko, and C. Polcino Milies (2005) [3]. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 17A32, Secondary 17D25.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we introduce nuclear dimension and compare it with a stronger form of the completely positive approximation property. We show that the approximations forming this stronger characterisation of the completely positive approximation property witness finite nuclear dimension if and only if the underlying C*-algebra is approximately finite dimensional. We also extend this result to nuclear dimension at most omega. We review interactions between separably acting injective von Neumann algebras and separable nuclear C*-algebras. In particular, we discuss aspects of Connes' work and how some of his strategies have been used by C^*-algebraist to estimate the nuclear dimension of certain classes of C*-algebras. We introduce a notion of coloured isomorphisms between separable unital C*-algebras. Under these coloured isomorphisms ideal lattices, trace spaces, commutativity, nuclearity, finite nuclear dimension and weakly pure infiniteness are preserved. We show that these coloured isomorphisms induce isomorphisms on the classes of finite dimensional and commutative C*-algebras. We prove that any pair of Kirchberg algebras are 2-coloured isomorphic and any pair of separable, simple, unital, finite, nuclear and Z-stable C*-algebras with unique trace which satisfy the UCT are also 2-coloured isomorphic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mathematical skills that we acquire during formal education mostly entail exact numerical processing. Besides this specifically human faculty, an additional system exists to represent and manipulate quantities in an approximate manner. We share this innate approximate number system (ANS) with other nonhuman animals and are able to use it to process large numerosities long before we can master the formal algorithms taught in school. Dehaene´s (1992) Triple Code Model (TCM) states that also after the onset of formal education, approximate processing is carried out in this analogue magnitude code no matter if the original problem was presented nonsymbolically or symbolically. Despite the wide acceptance of the model, most research only uses nonsymbolic tasks to assess ANS acuity. Due to this silent assumption that genuine approximation can only be tested with nonsymbolic presentations, up to now important implications in research domains of high practical relevance remain unclear, and existing potential is not fully exploited. For instance, it has been found that nonsymbolic approximation can predict math achievement one year later (Gilmore, McCarthy, & Spelke, 2010), that it is robust against the detrimental influence of learners´ socioeconomic status (SES), and that it is suited to foster performance in exact arithmetic in the short-term (Hyde, Khanum, & Spelke, 2014). We provided evidence that symbolic approximation might be equally and in some cases even better suited to generate predictions and foster more formal math skills independently of SES. In two longitudinal studies, we realized exact and approximate arithmetic tasks in both a nonsymbolic and a symbolic format. With first graders, we demonstrated that performance in symbolic approximation at the beginning of term was the only measure consistently not varying according to children´s SES, and among both approximate tasks it was the better predictor for math achievement at the end of first grade. In part, the strong connection seems to come about from mediation through ordinal skills. In two further experiments, we tested the suitability of both approximation formats to induce an arithmetic principle in elementary school children. We found that symbolic approximation was equally effective in making children exploit the additive law of commutativity in a subsequent formal task as a direct instruction. Nonsymbolic approximation on the other hand had no beneficial effect. The positive influence of the symbolic approximate induction was strongest in children just starting school and decreased with age. However, even third graders still profited from the induction. The results show that also symbolic problems can be processed as genuine approximation, but that beyond that they have their own specific value with regard to didactic-educational concerns. Our findings furthermore demonstrate that the two often con-founded factors ꞌformatꞌ and ꞌdemanded accuracyꞌ cannot be disentangled easily in first graders numerical understanding, but that children´s SES also influences existing interrelations between the different abilities tested here.