Some generalizations of commutativity for linear transformations on a finite dimensional vector space
Data(s) |
1966
|
---|---|
Resumo |
<p>Let <i>L</i> be the algebra of all linear transformations on an n-dimensional vector space V over a field <i>F</i> and let A, B, Ɛ<i>L</i>. Let A<sub>i+1</sub> = A<sub>i</sub>B - BA<sub>i</sub>, i = 0, 1, 2,…, with A = A<sub>o</sub>. Let f<sub>k</sub> (A, B; σ) = A<sub>2K+1</sub> - <sup>σ</sup>1<sup>A</sup>2K-1 <sup>+</sup> <sup>σ</sup>2<sup>A</sup>2K-3 -… +(-1)<sup>K</sup>σ<sub>K</sub>A<sub>1</sub> where σ = (σ<sub>1</sub>, σ<sub>2</sub>,…, σ<sub>K</sub>), σ<sub>i</sub> belong to <i>F</i> and K = k(k-1)/2. Taussky and Wielandt [Proc. Amer. Math. Soc., 13(1962), 732-735] showed that f<sub>n</sub>(A, B; σ) = 0 if σ<sub>i</sub> is the i<sup>th</sup> elementary symmetric function of (β<sub>4</sub>- β<sub>s</sub>)<sup>2</sup>, 1 ≤ r ˂ s ≤ n, i = 1, 2, …, N, with N = n(n-1)/2, where β<sub>4</sub> are the characteristic roots of B. In this thesis we discuss relations involving f<sub>k</sub>(X, Y; σ) where X, Y Ɛ <i>L</i> and 1 ≤ k ˂ n. We show: 1. If <i>F</i> is infinite and if for each X Ɛ <i>L</i> there exists σ so that f<sub>k</sub>(A, X; σ) = 0 where 1 ≤ k ˂ n, then A is a scalar transformation. 2. If <i>F</i> is algebraically closed, a necessary and sufficient condition that there exists a basis of V with respect to which the matrices of A and B are both in block upper triangular form, where the blocks on the diagonals are either one- or two-dimensional, is that certain products X<sub>1</sub>, X<sub>2</sub>…X<sub>r</sub> belong to the radical of the algebra generated by A and B over <i>F</i>, where X<sub>i</sub> has the form f<sub>2</sub>(A, P(A,B); σ), for all polynomials P(x, y). We partially generalize this to the case where the blocks have dimensions ≤ k. 3. If A and B generate <i>L</i>, if the characteristic of <i>F</i> does not divide n and if there exists σ so that f<sub>k</sub>(A, B; σ) = 0, for some k with 1 ≤ k ˂ n, then the characteristic roots of B belong to the splitting field of g<sub>k</sub>(w; σ) = w<sup>2K+1</sup> - σ<sub>1</sub>w<sup>2K-1</sup> + σ<sub>2</sub>w<sup>2K-3</sup> - …. +(-1)<sup>K</sup> σ<sub>K</sub>w over <i>F</i>. We use this result to prove a theorem involving a generalized form of property L [cf. Motzkin and Taussky, Trans. Amer. Math. Soc., 73(1952), 108-114]. 4. Also we give mild generalizations of results of McCoy [Amer. Math. Soc. Bull., 42(1936), 592-600] and Drazin [Proc. London Math. Soc., 1(1951), 222-231]. </p> |
Formato |
application/pdf |
Identificador |
http://thesis.library.caltech.edu/9165/1/Gaines_fj_1966.pdf Gaines, Fergus John (1966) Some generalizations of commutativity for linear transformations on a finite dimensional vector space. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechTHESIS:09222015-114033548 <http://resolver.caltech.edu/CaltechTHESIS:09222015-114033548> |
Relação |
http://resolver.caltech.edu/CaltechTHESIS:09222015-114033548 http://thesis.library.caltech.edu/9165/ |
Tipo |
Thesis NonPeerReviewed |