Locally nilpotent groups of units in tiled rings
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We consider locally nilpotent subgroups of units in basic tiled rings A, over local rings O which satisfy a weak commutativity condition. Tiled rings are generalizations of both tiled orders and incidence rings. If, in addition, O is Artinian then we give a complete description of the maximal locally nilpotent subgroups of the unit group of A up to conjugacy. All of them are both nilpotent and maximal Engel. This generalizes our description of such subgroups of upper-triangular matrices over O given in M. Dokuchaev, V. Kirichenko, and C. Polcino Milies (2005) [3]. (C) 2010 Elsevier Inc. All rights reserved. CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) FAPESP of Brazil Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
JOURNAL OF ALGEBRA, v.323, n.11, p.3055-3066, 2010 0021-8693 http://producao.usp.br/handle/BDPI/30724 10.1016/j.jalgebra.2010.02.034 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Algebra |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Unit group #Nilpotent subgroup #Engel subgroup #Incidence ring #Tiled order #Tiled ring #Mathematics |
Tipo |
article original article publishedVersion |