963 resultados para Break junctions
Resumo:
Recent experiments on Au break junctions [Phys. Rev. Lett. 88 (2002) 216803] have characterized the nonlinear conductance of stretched short Au nanowires. They reveal in the voltage range 10-20 meV the signatures of dissipation effects, likely due to phonons in the nanowire, reducing the conductance below the quantized value of 2e(2)/h. We present here a theory, based on a model tight-binding Hamiltonian and on non-equilibrium Green's function techniques, which accounts for the main features of the experiment. The theory helps in revealing details of the experiment which need to be addressed with a more realistic, less idealized, theoretical framework. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report a novel strategy for the regulation of charge transport through single molecule junctions via the combination of external stimuli of electrode potential, internal modulation of molecular structures, and optimization of anchoring groups. We have designed redox-active benzodifuran (BDF) compounds as functional electronic units to fabricate metal–molecule–metal (m–M–m) junction devices by scanning tunneling microscopy (STM) and mechanically controllable break junctions (MCBJ). The conductance of thiol-terminated BDF can be tuned by changing the electrode potentials showing clearly an off/on/off single molecule redox switching effect. To optimize the response, a BDF molecule tailored with carbodithioate (−CS2–) anchoring groups was synthesized. Our studies show that replacement of thiol by carbodithioate not only enhances the junction conductance but also substantially improves the switching effect by enhancing the on/off ratio from 2.5 to 8.
Resumo:
Using a scanning tunnelling microscope or mechanically controllable break junction it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the chain of ∼3.6 Å was reported which is not consistent with recent theoretical calculations. Here, using precise calibration procedures for both techniques, we measure the length of the atomic chains. Based on the distance between the peaks observed in the chain length histogram we find the mean value of the interatomic distance before chain rupture to be 2.5±0.2 Å. This value agrees with the theoretical calculations for the bond length. The discrepancy with the previous experimental measurements was due to the presence of He gas, that was used to promote the thermal contact, and which affects the value of the work function that is commonly used to calibrate distances in scanning tunnelling microscopy and mechanically controllable break junctions at low temperatures.
Resumo:
Pt nanocontacts, like those formed in mechanically controlled break junctions, are shown to develop spontaneous local magnetic order. Our density functional calculations predict that a robust local magnetic order exists in the atoms presenting low coordination, i.e., those forming the atom-sized neck. We thus find that the electronic transport can be spin polarized, although the net value of the conductance still agrees with available experimental information. Experimental implications of the formation of this new type of nanomagnet are discussed.
Resumo:
During the fracture of nanocontacts gold spontaneously forms freely suspended chains of atoms, which is not observed for the isoelectronic noble metals Ag and Cu. Au also differs from Ag and Cu in forming reconstructions at its low-index surfaces. Using mechanically controllable break junctions we show that all the 5d metals that show similar reconstructions (Ir, Pt, and Au) also form chains of atoms, while both properties are absent in the 4d neighbor elements (Rh, Pd, and Ag), indicating a common origin for these two phenomena. A competition between s and d bonding is proposed as an explanation.
Resumo:
Using a scanning tunnel microscope or mechanically controllable break junctions atomic contacts for Au, Pt, and Ir are pulled to form chains of atoms. We have recorded traces of conductance during the pulling process and averaged these for a large number of contacts. An oscillatory evolution of conductance is observed during the formation of the monoatomic chain suggesting a dependence on the numbers of atoms forming the chain being even or odd. This behavior is not only observed for the monovalent metal Au, as was predicted, but is also found for the other chain-forming metals, suggesting it to be a universal feature of atomic wires.
Resumo:
The dynamic deformation upon stretching of Ni nanowires as those formed with mechanically controllable break junctions or with a scanning tunneling microscope is studied both experimentally and theoretically. Molecular dynamics simulations of the breaking process are performed. In addition, and in order to compare with experiments, we also compute the transport properties in the last stages before failure using the first-principles implementation of Landauer's formalism included in our transport package ALACANT.
Resumo:
We present ab initio calculations of the evolution of anisotropic magnetoresistance (AMR) in Ni nanocontacts from the ballistic to the tunnel regime. We find an extraordinary enhancement of AMR, compared to bulk, in two scenarios. In systems without localized states, such as chemically pure break junctions, large AMR only occurs if the orbital polarization of the current is large, regardless of the anisotropy of the density of states. In systems that display localized states close to the Fermi energy, such as a single electron transistor with ferromagnetic electrodes, large AMR is related to the variation of the Fermi energy as a function of the magnetization direction.
Resumo:
This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.
Resumo:
The charge transport mechanism of oligo(p-phenylene ethynylene)s with lengths ranging from 0.98 to 5.11 nm was investigated using modified scanning tunneling microscopy break junction and conducting probe atomic force microscopy methods. The methods were based on observing the length dependence of molecular resistance at single molecule level and the current-voltage characteristics in a wide length distribution. An intrinsic transition from tunneling to hopping charge transport mechanism was observed near 2.75 nm. A new transitional zone was observed in the long length molecular wires compared to short ones. This was not a simple transition between direct tunneling and field emission, which may provide new insights into transport mechanism investigations. Theoretical calculations provided an essential explanation for these phenomena in terms of molecular electronic structures.
Resumo:
We present a combined experimental and theoretical study of the electronic transport through single-molecule junctions based on nitrile-terminated biphenyl derivatives. Using a scanning tunneling microscope-based break-junction technique, we show that the nitrile-terminated compounds give rise to well-defined peaks in the conductance histograms resulting from the high selectivity of the N-Au binding. Ab initio calculations have revealed that the transport takes place through the tail of the LUMO. Furthermore, we have found both theoretically and experimentally that the conductance of the molecular junctions is roughly proportional to the square of the cosine of the torsion angle between the two benzene rings of the biphenyl core, which demonstrates the robustness of this structure-conductance relationship.
Resumo:
Single molecular junction conductances of a family of five symmetric and two unsymmetric perylene tetracarboxylic bisimides (PBI) with variable bay-area substituents were studied employing a scanning tunneling microscope (STM)-based break junction technique. The stretching experiments provide clear evidence for the formation of single molecular junctions and π–π stacked dimers. Electrolyte gating demonstrates a distinct gating effect in symmetric molecular junctions, which strongly depends on molecular structure and properties of the solvent/electrolyte. Weak π–π-coupling in the unsymmetric dimers prevents rectification.
Resumo:
The conductance properties of a photoswitchable dimethyldihydropyrene (DHP) derivative have been investigated for the first time in single-molecule junctions using the mechanically controllable break junction technique. We demonstrate that the reversible structure changes induced by isomerization of a single bispyridine-substituted DHP molecule are correlated with a large drop of the conductance value. We found a very high ON/OFF ratio (>104) and an excellent reversibility of conductance switching.
Resumo:
We report an electrochemical gating approach with [similar]100% efficiency to tune the conductance of single-molecule 4,4′-bipyridine junctions using scanning-tunnelling-microscopy break junction technique. Density functional theory calculation suggests that electrochemical gating aligns molecular frontier orbitals relative to the electrode Fermi-level, switching the molecule from an off resonance state to “partial” resonance.
Resumo:
The synthesis and characterisation is described of six diaryltetrayne derivatives [Ar-(C[TRIPLE BOND]C)4-Ar] with Ar=4-NO2-C6H4- (NO24), 4-NH(Me)C6H4- (NHMe4), 4-NMe2C6H4- (NMe24), 4-NH2-(2,6-dimethyl)C6H4- (DMeNH24), 5-indolyl (IN4) and 5-benzothienyl (BTh4). X-ray molecular structures are reported for NO24, NHMe4, DMeNH24, IN4 and BTh4. The stability of the tetraynes has been assessed under ambient laboratory conditions (20 °C, daylight and in air): NO24 and BTh4 are stable for at least six months without observable decomposition, whereas NHMe4, NMe24, DMeNH24 and IN4 decompose within a few hours or days. The derivative DMeNH24, with ortho-methyl groups partially shielding the tetrayne backbone, is considerably more stable than the parent compound with Ar=4-NH2C6H4 (NH24). The ability of the stable tetraynes to anchor in Au|molecule|Au junctions is reported. Scanning-tunnelling-microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques are employed to investigate single-molecule conductance characteristics.