876 resultados para Behavior-Based
Resumo:
Construction is one of the most hazardous industries due to its dynamic, temporary, and decentralized nature. The Hong Kong Commissioner for Labor identifies worker behavior as the root cause of construction accidents. Behavior-based safety (BBS) is one effective approach in managing employee safety issues. However, there is little research on the application of BBS in the construction industry. This research proposes an extension of the BBS approach, proactive behavior-based safety (PBBS), to improve construction safety. PBBS integrates the theory of BBS with the technology of Proactive Construction Management System (PCMS). The innovations of PBBS are: (1) automatically monitoring location-based behaviors; (2)quantitatively measuring safety performance; (3) investigating potential causes of unsafe behaviors; and (4) improving the efficiency of safety management. A pilot study of a Hong Kong construction site practicing PBBS was conducted. The experiment results showed that PBBS performed well on construction accident prevention and the Safety Index (SI) of the two project teams, with increased improvements by 36.07% and 44.70% respectively. It is concluded that PBBS is effective and adaptable to construction industry.
Resumo:
M.H.Lee, Q. Meng and H. Holstein, ?Learning and Reuse of Experience in Behavior-Based Service Robots?, Seventh International Conference on Control, Automation, Robotics and Vision (ICARCV2002), pp1019-24, December 2002, Singapore
Resumo:
Conditional branches frequently exhibit similar behavior (bias, time-varying behavior,...), a property that can be used to improve branch prediction accuracy. Branch clustering constructs groups or clusters of branches with similar behavior and applies different branch prediction techniques to each branch cluster. We revisit the topic of branch clustering with the aim of generalizing branch clustering. We investigate several methods to measure cluster information, with the most effective the storage of information in the branch target buffer. Also, we investigate alternative methods of using the branch cluster identification in the branch predictor. By these improvements we arrive at a branch clustering technique that obtains higher accuracy than previous approaches presented in the literature for the gshare predictor. Furthermore, we evaluate our branch clustering technique in a wide range of predictors to show the general applicability of the method. Branch clustering improves the accuracy of the local history (PAg) predictor, the path-based perceptron and the PPM-like predictor, one of the 2004 CBP finalists.
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
Aquesta tesi proposa l'ús d'un seguit de tècniques pel control a alt nivell d'un robot autònom i també per l'aprenentatge automàtic de comportaments. L'objectiu principal de la tesis fou el de dotar d'intel·ligència als robots autònoms que han d'acomplir unes missions determinades en entorns desconeguts i no estructurats. Una de les premisses tingudes en compte en tots els passos d'aquesta tesis va ser la selecció d'aquelles tècniques que poguessin ésser aplicades en temps real, i demostrar-ne el seu funcionament amb experiments reals. El camp d'aplicació de tots els experiments es la robòtica submarina. En una primera part, la tesis es centra en el disseny d'una arquitectura de control que ha de permetre l'assoliment d'una missió prèviament definida. En particular, la tesis proposa l'ús de les arquitectures de control basades en comportaments per a l'assoliment de cada una de les tasques que composen la totalitat de la missió. Una arquitectura d'aquest tipus està formada per un conjunt independent de comportaments, els quals representen diferents intencions del robot (ex.: "anar a una posició", "evitar obstacles",...). Es presenta una recerca bibliogràfica sobre aquest camp i alhora es mostren els resultats d'aplicar quatre de les arquitectures basades en comportaments més representatives a una tasca concreta. De l'anàlisi dels resultats se'n deriva que un dels factors que més influeixen en el rendiment d'aquestes arquitectures, és la metodologia emprada per coordinar les respostes dels comportaments. Per una banda, la coordinació competitiva és aquella en que només un dels comportaments controla el robot. Per altra banda, en la coordinació cooperativa el control del robot és realitza a partir d'una fusió de totes les respostes dels comportaments actius. La tesis, proposa un esquema híbrid d'arquitectura capaç de beneficiar-se dels principals avantatges d'ambdues metodologies. En una segona part, la tesis proposa la utilització de l'aprenentatge per reforç per aprendre l'estructura interna dels comportaments. Aquest tipus d'aprenentatge és adequat per entorns desconeguts i el procés d'aprenentatge es realitza al mateix temps que el robot està explorant l'entorn. La tesis presenta també un estat de l'art d'aquest camp, en el que es detallen els principals problemes que apareixen en utilitzar els algoritmes d'aprenentatge per reforç en aplicacions reals, com la robòtica. El problema de la generalització és un dels que més influeix i consisteix en permetre l'ús de variables continues sense augmentar substancialment el temps de convergència. Després de descriure breument les principals metodologies per generalitzar, la tesis proposa l'ús d'una xarxa neural combinada amb l'algoritme d'aprenentatge per reforç Q_learning. Aquesta combinació proporciona una gran capacitat de generalització i una molt bona disposició per aprendre en tasques de robòtica amb exigències de temps real. No obstant, les xarxes neurals són aproximadors de funcions no-locals, el que significa que en treballar amb un conjunt de dades no homogeni es produeix una interferència: aprendre en un subconjunt de l'espai significa desaprendre en la resta de l'espai. El problema de la interferència afecta de manera directa en robòtica, ja que l'exploració de l'espai es realitza sempre localment. L'algoritme proposat en la tesi té en compte aquest problema i manté una base de dades representativa de totes les zones explorades. Així doncs, totes les mostres de la base de dades s'utilitzen per actualitzar la xarxa neural, i per tant, l'aprenentatge és homogeni. Finalment, la tesi presenta els resultats obtinguts amb la arquitectura de control basada en comportaments i l'algoritme d'aprenentatge per reforç. Els experiments es realitzen amb el robot URIS, desenvolupat a la Universitat de Girona, i el comportament après és el seguiment d'un objecte mitjançant visió per computador. La tesi detalla tots els dispositius desenvolupats pels experiments així com les característiques del propi robot submarí. Els resultats obtinguts demostren la idoneïtat de les propostes en permetre l'aprenentatge del comportament en temps real. En un segon apartat de resultats es demostra la capacitat de generalització de l'algoritme d'aprenentatge mitjançant el "benchmark" del "cotxe i la muntanya". Els resultats obtinguts en aquest problema milloren els resultats d'altres metodologies, demostrant la millor capacitat de generalització de les xarxes neurals.
Resumo:
A behavior-based safety program improves overall safety culture and safety performance of an organization. A solid behavior-based safety program is achieved by successfully implementing key components. Key components include management commitment to the process, an effective training program, a cohesive observation process and a successful data collecting and reporting system. This Applied Capstone project defines a regional approach for each of the key components of a behavior-based safety program. Recommendations resulting from the project provide the company studied guidance on developing a consistent behavior-based safety program.
Resumo:
Fast spreading unknown viruses have caused major damage on computer systems upon their initial release. Current detection methods have lacked capabilities to detect unknown viruses quickly enough to avoid mass spreading and damage. This dissertation has presented a behavior based approach to detecting known and unknown viruses based on their attempt to replicate. Replication is the qualifying fundamental characteristic of a virus and is consistently present in all viruses making this approach applicable to viruses belonging to many classes and executing under several conditions. A form of replication called self-reference replication, (SR-replication), has been formalized as one main type of replication which specifically replicates by modifying or creating other files on a system to include the virus itself. This replication type was used to detect viruses attempting replication by referencing themselves which is a necessary step to successfully replicate files. The approach does not require a priori knowledge about known viruses. Detection was accomplished at runtime by monitoring currently executing processes attempting to replicate. Two implementation prototypes of the detection approach called SRRAT were created and tested on the Microsoft Windows operating systems focusing on the tracking of user mode Win32 API system calls and Kernel mode system services. The research results showed SR-replication capable of distinguishing between file infecting viruses and benign processes with little or no false positives and false negatives. ^
Resumo:
Fast spreading unknown viruses have caused major damage on computer systems upon their initial release. Current detection methods have lacked capabilities to detect unknown virus quickly enough to avoid mass spreading and damage. This dissertation has presented a behavior based approach to detecting known and unknown viruses based on their attempt to replicate. Replication is the qualifying fundamental characteristic of a virus and is consistently present in all viruses making this approach applicable to viruses belonging to many classes and executing under several conditions. A form of replication called self-reference replication, (SR-replication), has been formalized as one main type of replication which specifically replicates by modifying or creating other files on a system to include the virus itself. This replication type was used to detect viruses attempting replication by referencing themselves which is a necessary step to successfully replicate files. The approach does not require a priori knowledge about known viruses. Detection was accomplished at runtime by monitoring currently executing processes attempting to replicate. Two implementation prototypes of the detection approach called SRRAT were created and tested on the Microsoft Windows operating systems focusing on the tracking of user mode Win32 API system calls and Kernel mode system services. The research results showed SR-replication capable of distinguishing between file infecting viruses and benign processes with little or no false positives and false negatives.
Resumo:
Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories
Resumo:
One of the features of the sporting industry is the ritualized way in which it is consumed across the world. Fans of every sport have rituals and superstitions to help them enjoy the spectacle, socialize with other like-minded fans, and reduce some of the anxiety of watching their team play. These rituals include dress, barracking styles and pre and post match behaviors. What is not known are the factors that lead fans to engage in ritual behaviors and what relationship rituals have with desirable outcomes such as increased attendance, attitudinal loyalty or satisfaction. Given that some ritual behaviors are clearly undesirable, (e.g., hooliganism), understanding these relationships is important to managers who may be questioning whether rituals should be encouraged. Although ritualized behavior amongst fans is clearly visible, the symbolic and emotional nature of ritual poses challenges to researchers. Most previous ritual research is exploratory and qualitative in nature. This study, however, uses a behavior-based scale to measure fan ritual and relates it to desirable outcomes such as commitment and attendance. Over 2,000 season ticket holders of a football (soccer) team in Australia’s professional A-League competition were surveyed to investigate the antecedents and consequences of fan ritual behavior. Cluster analysis was used to explore the characteristics of respondents, and it revealed that those fans that engage in ritual behavior also differed on many other demographic and attitudinal dimensions. The associations between ritual and psychological commitment, and ritual and attendance are positive and significant. When used in conjunction with other constructs, fan ritual also improves the explanation of attendance behavior. The findings support previous research that found a significant and positive relationship between team identification, involvement and attendance, and extend previous research by finding a significant and positive relationship between rituals and attendance. For sports marketing practitioners, the results indicate the importance of developing and managing consumption rituals tied to game day attendance, with a view to generating uncommon loyalty.
Resumo:
This study examines the impact of incentives on commuters' travel behavior based upon a questionnaire survey conducted with respect to the Beijing Subway System. Overall, we find that offering incentives to commuters, particularly fast food restaurant-related services and reduced ticket fares, has a positive influence on avoiding the morning rush hour. Furthermore, by using an interaction analysis, we discover that a flexible work schedule has an impact on commuters' behavior and the efficiency of the subway system. Finally, we recommend two possible policies to maximize the utility of the subway system and to reduce congestion at the peak of morning service: (1) a set of incentives that includes free wireless internet service with a coupon for breakfast and a discount on ticket fares before the morning peak, and; (2) the introduction of a flexible work schedule.
Resumo:
Meng Q. and Lee M.H., Behaviour-Based Assistive Robotics for the Home, in Proc. SMC2001, IEEE 2001 Int. Conf. on Systems, Man and Cybernetics, Tucson, Arizona, Oct 2001, pp684-689.