990 resultados para Anàlisi de Fourier


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Los análisis de Fourier permiten caracterizar el contorno del diente a partir de un número determinado de puntos y extraer una serie de parámetros para un posterior análisis multivariante. No obstante, la gran complejidad que presentan algunas conformaciones, obliga a comprobar cuántos puntos son necesarios para una correcta representación de ésta. El objetivo de este trabajo es aplicar y validar los análisis de Fourier (Polar y Elíptico) en el estudio de la forma dental a partir de diferentes puntos de contorno y explorar la variabilidad morfométrica en diferentes géneros. Se obtuvieron fotografías digitales de la superfi cie oclusal en segundos molares inferiores (M2s) de 4 especies de Primates (Hylobates moloch, Gorilla beringei graueri, Pongo pygmaeus pygmaeus y Pan troglodytes schweirfurthii) y se defi nió su contorno con 30, 40, 60, 80, 100 y 120 puntos y su representación formal a 10 armónicos. El análisis de la variabilidad morfométrica se realizó mediante la aplicación de Análisis Discriminantes y un NP-MANOVA a partir de matrices de distancias para determinar la variabilidad y porcentajes de clasifi cacióncorrecta, a nivel metodológico y taxonómico. Los resultados indicaron que los análisis de forma con series de Fourier permiten analizar la variabilidad morfométrica de M2s en géneros de Hominoidea, con independencia del número de puntos de contorno (30 a 120). Los porcentajes de clasifi cación son más variables e inferiores con el uso de la serie Polar (≈60-90) que con la Elíptica (75-100%). Un número entre 60-100 puntos de contorno mediante el método elíptico garantiza una descripción correcta de la forma del diente.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vehicle operations in underwater environments are often compromised by poor visibility conditions. For instance, the perception range of optical devices is heavily constrained in turbid waters, thus complicating navigation and mapping tasks in environments such as harbors, bays, or rivers. A new generation of high-definition forward-looking sonars providing acoustic imagery at high frame rates has recently emerged as a promising alternative for working under these challenging conditions. However, the characteristics of the sonar data introduce difficulties in image registration, a key step in mosaicing and motion estimation applications. In this work, we propose the use of a Fourier-based registration technique capable of handling the low resolution, noise, and artifacts associated with sonar image formation. When compared to a state-of-the art region-based technique, our approach shows superior performance in the alignment of both consecutive and nonconsecutive views as well as higher robustness in featureless environments. The method is used to compute pose constraints between sonar frames that, integrated inside a global alignment framework, enable the rendering of consistent acoustic mosaics with high detail and increased resolution. An extensive experimental section is reported showing results in relevant field applications, such as ship hull inspection and harbor mapping

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document del fitxer adjunt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We characterize the approach regions so that the non-tangential maximal function is of weak-type on potential spaces, for which we use a simple argument involving Carleson measure estimates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We give a geometric description of the interpolating varieties for the algebra of Fourier transforms of distributions (or Beurling ultradistributions) with compact support on the real line.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study a generalization of the classical Marcinkiewicz-Zygmund inequalities. We relate this problem to the sampling sequences in the Paley-Wiener space and by using this analogy we give sharp necessary and sufficient computable conditions for a family of points to satisfy the Marcinkiewicz-Zygmund inequalities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By theorems of Ferguson and Lacey ($d=2$) and Lacey and Terwilleger ($d>2$), Nehari's theorem is known to hold on the polydisc $\D^d$ for $d>1$, i.e., if $H_\psi$ is a bounded Hankel form on $H^2(\D^d)$ with analytic symbol $\psi$, then there is a function $\varphi$ in $L^\infty(\T^d)$ such that $\psi$ is the Riesz projection of $\varphi$. A method proposed in Helson's last paper is used to show that the constant $C_d$ in the estimate $\|\varphi\|_\infty\le C_d \|H_\psi\|$ grows at least exponentially with $d$; it follows that there is no analogue of Nehari's theorem on the infinite-dimensional polydisc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a new notion for the deformation of Gabor systems. Such deformations are in general nonlinear and, in particular, include the standard jitter error and linear deformations of phase space. With this new notion we prove a strong deformation result for Gabor frames and Gabor Riesz sequences that covers the known perturbation and deformation results. Our proof of the deformation theorem requires a new characterization of Gabor frames and Gabor Riesz sequences. It is in the style of Beurling's characterization of sets of sampling for bandlimited functions and extends significantly the known characterization of Gabor frames 'without inequalities' from lattices to non-uniform sets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L’objectiu principal d’aquest projecte és posar a punt el mètode d’anàlisi d’urea en llet crua de vaca mitjançant la tècnica d’Infraroig per Transformada de Fourier (Fourier Transform Infrared Spectroscopy, FTIR). S’haurà de portar a terme la validació del mètode per FTIR (seguint els criteris de la ISO 17025) mitjançant la comparació amb el mètode de referència utilitzat actualment al laboratori.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New sufficient conditions for representation of a function via the absolutely convergent Fourier integral are obtained in the paper. In the main result, Theorem 1.1, this is controlled by the behavior near infinity of both the function and its derivative. This result is extended to any dimension d &= 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this survey, results on the representation of a function as an absolutely convergent Fourier integral are collected, classified and discussed. Certain applications are also given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove two-sided inequalities between the integral moduli of smoothness of a function on R d[superscript] / T d[superscript] and the weighted tail-type integrals of its Fourier transform/series. Sharpness of obtained results in particular is given by the equivalence results for functions satisfying certain regular conditions. Applications include a quantitative form of the Riemann-Lebesgue lemma as well as several other questions in approximation theory and the theory of function spaces.