A lower bound in Nehari's theorem on the polydisc


Autoria(s): Ortega Cerdà, Joaquim; Seip, Kristian
Contribuinte(s)

Universitat de Barcelona

Resumo

By theorems of Ferguson and Lacey ($d=2$) and Lacey and Terwilleger ($d>2$), Nehari's theorem is known to hold on the polydisc $\D^d$ for $d>1$, i.e., if $H_\psi$ is a bounded Hankel form on $H^2(\D^d)$ with analytic symbol $\psi$, then there is a function $\varphi$ in $L^\infty(\T^d)$ such that $\psi$ is the Riesz projection of $\varphi$. A method proposed in Helson's last paper is used to show that the constant $C_d$ in the estimate $\|\varphi\|_\infty\le C_d \|H_\psi\|$ grows at least exponentially with $d$; it follows that there is no analogue of Nehari's theorem on the infinite-dimensional polydisc.

Identificador

http://hdl.handle.net/2445/34463

Idioma(s)

eng

Publicador

Springer

Direitos

(c) The Hebrew University of Jerusalem, 2012

info:eu-repo/semantics/openAccess

Palavras-Chave #Teoria d'operadors #Anàlisi de Fourier #Anàlisi harmònica #Funcions de diverses variables complexes #Operator theory #Fourier analysis #Harmonic analysis #Functions of several complex variables
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/acceptedVersion