910 resultados para 291601 Arithmetic and Logic Structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an asymmetric multi-processor SoC architecture, featuring a master CPU running uClinux, and multiple loosely-coupled slave CPUs running real-time threads assigned by the master CPU. Real-time SoC architectures often demand a compromise between a generic platform for different applications, and application-specific customizations to achieve performance requirements. Our proposed architecture offers a generic platform running a conventional embedded operating system providing a traditional software-oriented development approach, while multiple slave CPUs act as a dedicated independent real-time threads execution unit running in parallel of master CPU to achieve performance requirements. In this paper, the architecture is described, including the application / threading development environment. The performance of the architecture with several standard benchmark routines is also analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the implementation of a TMR (Triple Modular Redundant) microprocessor system on a FPGA. The system exhibits true redundancy in that three instances of the same processor system (both software and hardware) are executed in parallel. The described system uses software to control external peripherals and a voter is used to output correct results. An error indication is asserted whenever two of the three outputs match or all three outputs disagree. The software has been implemented to conform to a particular safety critical coding guideline/standard which is popular in industry. The system was verified by injecting various faults into it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many computationally intensive scientific applications involve repetitive floating point operations other than addition and multiplication which may present a significant performance bottleneck due to the relatively large latency or low throughput involved in executing such arithmetic primitives on commod- ity processors. A promising alternative is to execute such primitives on Field Programmable Gate Array (FPGA) hardware acting as an application-specific custom co-processor in a high performance reconfig- urable computing platform. The use of FPGAs can provide advantages such as fine-grain parallelism but issues relating to code development in a hardware description language and efficient data transfer to and from the FPGA chip can present significant application development challenges. In this paper, we discuss our practical experiences in developing a selection of floating point hardware designs to be implemented using FPGAs. Our designs include some basic mathemati cal library functions which can be implemented for user defined precisions suitable for novel applications requiring non-standard floating point represen- tation. We discuss the details of our designs along with results from performance and accuracy analysis tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present the outcomes of a project on the exploration of the use of Field Programmable Gate Arrays(FPGAs) as co-processors for scientific computation. We designed a custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well suited for applications that require many independent tri diagonal system solves, such as finite difference methods for solving PDEs or applications utilising cubic spline interpolation. The selected solver algorithm was the Tri Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). Our solver supports user specified precision thought the use of a custom floating point VHDL library supporting addition, subtraction, multiplication and division. The variable precision TDMA solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully in hardware using a simplified solver model. The details of implementation, the limitations, and future work are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present the outcomes of a project on the exploration of the use of Field Programmable Gate Arrays (FPGAs) as co-processors for scientific computation. We designed a custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well suited for applications that require many independent tri-diagonal system solves, such as finite difference methods for solving PDEs or applications utilising cubic spline interpolation. The selected solver algorithm was the Tri-Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). Our solver supports user specified precision thought the use of a custom floating point VHDL library supporting addition, subtraction, multiplication and division. The variable precision TDMA solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully in hardware using a simplified solver model. The details of implementation, the limitations, and future work are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"NSF-MCS-80-00058"--Cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper summarizes literature explaining workplace bullying and focuses on organisational antecedents of bullying. In order to better understand the logic behind bullying, a model discussing different types of explanations is put forward. Thus, explanations for and factors associated with bullying are classified into three groups, i.e. enabling structures or necessary antecedents (e.g. perceived power imbalances, low perceived costs, and dissatisfaction and frustration), motivating structures or incentives (e.g. internal competition, reward systems, and expected benefits), and precipitating processes or triggering circumstances (e.g. downsizing and restructuring, organisational changes, changes in the composition of the workgroup). The paper concludes that bullying is often an interaction between structures and processes from all three groupings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of signed-digit negabinary representation, parallel two-step addition and one-step subtraction can be performed for arbitrary-length negabinary operands.; The arithmetic is realized by signed logic operations and optically implemented by spatial encoding and decoding techniques. The proposed algorithm and optical system are simple, reliable, and practicable, and they have the property of parallel processing of two-dimensional data. This leads to an efficient design for the optical arithmetic and logic unit. (C) 1997 Optical Society of America.