994 resultados para 0-6 años
Resumo:
The anomalous X-ray scattering (AXS) method using Mo K absorption edges has been employed for obtaining the local structural information of superionic conducting glass having the composition (AgI)(0.6)(Ag2MoO4)(0.4). The possible atomic arrangements in the near-neighbor region of this glass were estimated by coupling the results with the least-squares variational analysis so as to reproduce the differential intensity profile for Mo as well as the ordinary scattering profile. The coordination number of oxygen around Mo is found to be about 4 at the distance of 0.180 mn. This implies that the most probable structural entity in the glass is the MoO4 tetrahedral unit which has been proposed based on infrared spectroscopy. The value of the coordination number of I- around Ag+ is estimated as 4.4 at 0.287 nm, suggesting an arrangement similar to that of crystalline or molten AgI.
Resumo:
Single crystals of Bi2V1-xGexO5.5-x/2 (x = 0.2, 0.4, and 0.6) were grown by slow cooling of melts. Bismuth vanadate transforms from an orthorhombic to a tetragonal structure and subsequently to an orthorhombic system when the Ge4+ concentration was varied from x = 0.2 to x = 0.6. All of these compositions crystallized in polar space groups (Aba2, F4mm, and Fmm2 for x = 0.2, 0.4, and 0.6, respectively). The structures were fully determined by single crystal X-ray diffraction studies, (C) 1999 Elsevier Science Ltd.
Resumo:
The effect of Fe content (0.2 to 0.6 pct) on the microstructure and mechanical properties of a cast Al-7Si-0.3Mg (LM 25/356) alloy has been investigated. Further, 1 pct mischmetal (MM) additions (a mixture of rare-earth (RE) elements) were made to these alloys, and their mechanical properties at room and at elevated temperatures (up to 200 degreesC) were evaluated. A structure-property correlation on this alloy was attempted using optical microstructure analysis, fractographs, X-ray diffraction, energy-dispersive analysis of X-rays (EDX), and quantitative metallography by image analysis. An increase in Fe content increased the volume percentage of Fe-bearing intermetallic compounds (beta and pi phases), contributing to the lower yield strength (YS), ultimate tensile strength (UTS), percentage elongation, and higher hardness. An addition of 1 pct MM to the alloys containing 0.2 and 0.6 pct Fe was found to refine the microstructure; modify the eutectic silicon and La, Ce, and Nd present in the MM; form different intermetallic compounds with Al, Si, Fe, and Mg; and improve the mechanical properties of the alloys both at room and elevated temperatures.
Resumo:
Results of a study of dc magnetization M(T,H), performed on a Nd(0.6)Pb(0.4)MnO(3) single crystal in the temperature range around T(C) (Curie temperature) which embraces the supposed critical region \epsilon\=\T-T(C)\/T(C)less than or equal to0.05 are reported. The magnetic data analyzed in the critical region using the Kouvel-Fisher method give the values for the T(C)=156.47+/-0.06 K and the critical exponents beta=0.374+/-0.006 (from the temperature dependence of magnetization) and gamma=1.329+/-0.003 (from the temperature dependence of initial susceptibility). The critical isotherm M(T(C),H) gives delta=4.54+/-0.10. Thus the scaling law gamma+beta=deltabeta is fulfilled. The critical exponents obey the single scaling equation of state M(H,epsilon)=epsilon(beta)f(+/-)(H/epsilon(beta+gamma)), where f(+) for T>T(C) and f(-) for T
Resumo:
The critical properties of orthorhombic Pr(0.6)Sr(0.4)MnO(3) single crystals were investigated by a series of static magnetization measurements along the three different crystallographic axes as well as by specific heat measurements. A careful range-of-fitting-analysis of the magnetization and susceptibility data obtained from the modified Arrott plots shows that Pr(0.6)Sr(0.4)MnO(3) has a very narrow critical regime. Nevertheless, the system belongs to the three-dimensional (3D) Heisenberg universality class with short-range exchange. The critical exponents obey Widom scaling and are in excellent agreement with the single scaling equation of state M(H,epsilon) = vertical bar epsilon vertical bar(beta) f(+/-)(H/vertical bar epsilon vertical bar((beta+gamma)); with f(+) for T > T(c) and f(-) for T < T(c). A detailed analysis of the specific heat that account for all relevant contributions allows us to extract and analyze the contribution related to the magnetic phase transition. The specific heat indicates the presence of a linear electronic term at low temperatures and a prominent contribution from crystal field excitations of Pr. A comparison with data from literature for PrMnO(3) shows that a Pr-Mn magnetic exchange is responsible for a sizable shift in the lowest lying excitation.
Resumo:
Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study and compare magnetic and electron paramagnetic resonance behaviors of bulk and nanoparticles of Nd1-xCaxMnO3 in hole doped (x = 0.4; NCMOH) and electron doped (x = 0.6; NCMOE) samples. NCMOH in bulk form shows a complex temperature dependence of magnetization M(T), with a charge ordering transition at similar to 250 K, an antiferromagnetic (AFM) transition at similar to 150 K, and a transition to a canted AFM phase/mixed phase at similar to 80 K. Bulk NCMOE behaves quite differently with just a charge ordering transition at similar to 280 K, thus providing a striking example of the so called electron-hole asymmetry. While our magnetization data on bulk samples are consistent with the earlier reports, the new results on the nanoparticles bring out drastic effects of size reduction. They show that M(T) behaviors of the two nanosamples are essentially similar in addition to the absence of the charge order in them thus providing strong evidence for vanishing of the electron-hole asymmetry in nanomanganites. This conclusion is further corroborated by electron paramagnetic resonance studies which show that the large difference in the ``g'' values and their temperature dependences found for the two bulk samples disappears as they approach a common behavior in the corresponding nanosamples. (C) 2015 AIP Publishing LLC.
Resumo:
351 p.
Resumo:
近年来,随着激光告警、激光指示、风速测量、激光雷达尤其是激光美容等方面的需求逐渐增加,要求掺铒激光玻璃能够实现比以往更高重复频率以及更大能量的激光输出,其中对脉冲能量的要求达1~10 J。
Resumo:
Real-world tasks often require movements that depend on a previous action or on changes in the state of the world. Here we investigate whether motor memories encode the current action in a manner that depends on previous sensorimotor states. Human subjects performed trials in which they made movements in a randomly selected clockwise or counterclockwise velocity-dependent curl force field. Movements during this adaptation phase were preceded by a contextual phase that determined which of the two fields would be experienced on any given trial. As expected from previous research, when static visual cues were presented in the contextual phase, strong interference (resulting in an inability to learn either field) was observed. In contrast, when the contextual phase involved subjects making a movement that was continuous with the adaptation-phase movement, a substantial reduction in interference was seen. As the time between the contextual and adaptation movement increased, so did the interference, reaching a level similar to that seen for static visual cues for delays >600 ms. This contextual effect generalized to purely visual motion, active movement without vision, passive movement, and isometric force generation. Our results show that sensorimotor states that differ in their recent temporal history can engage distinct representations in motor memory, but this effect decays progressively over time and is abolished by ∼600 ms. This suggests that motor memories are encoded not simply as a mapping from current state to motor command but are encoded in terms of the recent history of sensorimotor states.
Resumo:
采用无需在样品上制备电极的电容耦合的光伏谱方法,实验测量了In_(0.4)Ga_(0.6)As/GaAs自组织量子点在不同的温度下的光伏谱,对测量谱峰进行了指认,研究了量子点谱峰能量位置随温度的依赖关系。实验结果表明,量子点具有与体材料及二维体系不同的温度特性,对实验所测样品,其激子峰能量随温度增加而红移的速率约为GaAs体材料带隙变化的1.4倍。