866 resultados para Computer Vision and Pattern Recognition
Resumo:
Electrocardiographic (ECG) signals are emerging as a recent trend in the field of biometrics. In this paper, we propose a novel ECG biometric system that combines clustering and classification methodologies. Our approach is based on dominant-set clustering, and provides a framework for outlier removal and template selection. It enhances the typical workflows, by making them better suited to new ECG acquisition paradigms that use fingers or hand palms, which lead to signals with lower signal to noise ratio, and more prone to noise artifacts. Preliminary results show the potential of the approach, helping to further validate the highly usable setups and ECG signals as a complementary biometric modality.
Resumo:
Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for humancomputer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of vision-based interaction systems can be the same for all applications and thus facilitate the implementation. In order to test the proposed solutions, three prototypes were implemented. For hand posture recognition, a SVM model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications.
Resumo:
This project was funded under the Applied Research Grants Scheme administered by Enterprise Ireland. The project was a partnership between Galway - Mayo Institute of Technology and an industrial company, Tyco/Mallinckrodt Galway. The project aimed to develop a semi - automatic, self - learning pattern recognition system capable of detecting defects on the printed circuits boards such as component vacancy, component misalignment, component orientation, component error, and component weld. The research was conducted in three directions: image acquisition, image filtering/recognition and software development. Image acquisition studied the process of forming and digitizing images and some fundamental aspects regarding the human visual perception. The importance of choosing the right camera and illumination system for a certain type of problem has been highlighted. Probably the most important step towards image recognition is image filtering, The filters are used to correct and enhance images in order to prepare them for recognition. Convolution, histogram equalisation, filters based on Boolean mathematics, noise reduction, edge detection, geometrical filters, cross-correlation filters and image compression are some examples of the filters that have been studied and successfully implemented in the software application. The software application developed during the research is customized in order to meet the requirements of the industrial partner. The application is able to analyze pictures, perform the filtering, build libraries, process images and generate log files. It incorporates most of the filters studied and together with the illumination system and the camera it provides a fully integrated framework able to analyze defects on printed circuit boards.
Resumo:
The last ten years of research in the field of innate immunity have been incredibly fertile: the transmembrane Toll-like receptors (TLRs) were discovered as guardians protecting the host against microbial attacks and the emerging pathways characterized in detail. More recently, cytoplasmic sensors were identified, which are capable of detecting not only microbial, but also self molecules. Importantly, while such receptors trigger crucial host responses to microbial insult, over-activity of some of them has been linked to autoinflammatory disorders, hence demonstrating the importance of tightly regulating their actions over time and space. Here, we provide an overview of recent findings covering this area of innate and inflammatory responses that originate from the cytoplasm
Resumo:
This study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.
Resumo:
Current research on sleep using experimental animals is limited by the expense and time-consuming nature of traditional EEG/EMG recordings. We present here an alternative, noninvasive approach utilizing piezoelectric films configured as highly sensitive motion detectors. These film strips attached to the floor of the rodent cage produce an electrical output in direct proportion to the distortion of the material. During sleep, movement associated with breathing is the predominant gross body movement and, thus, output from the piezoelectric transducer provided an accurate respiratory trace during sleep. During wake, respiratory movements are masked by other motor activities. An automatic pattern recognition system was developed to identify periods of sleep and wake using the piezoelectric generated signal. Due to the complex and highly variable waveforms that result from subtle postural adjustments in the animals, traditional signal analysis techniques were not sufficient for accurate classification of sleep versus wake. Therefore, a novel pattern recognition algorithm was developed that successfully distinguished sleep from wake in approximately 95% of all epochs. This algorithm may have general utility for a variety of signals in biomedical and engineering applications. This automated system for monitoring sleep is noninvasive, inexpensive, and may be useful for large-scale sleep studies including genetic approaches towards understanding sleep and sleep disorders, and the rapid screening of the efficacy of sleep or wake promoting drugs.
Resumo:
On the basis of MRI examinations in 88 neonates and infants with perinatal asphyxia, we defined 6 different patterns on T2-weighted images: pattern A--scattered hyperintensity of both hemispheres of the telencephalon with blurred border zones between cortex and white matter, indicating diffuse brain injury; pattern B--parasagittal hyperintensity extending into the corona radiata, corresponding to the watershed zones; pattern C--hyper- and hypointense lesions in thalamus and basal ganglia, which relate to haemorrhagic necrosis or iron deposition in these areas; pattern D--periventricular hyperintensity, mainly along the lateral ventricles, i.e. periventricular leukomalacia (PVL), originating from the matrix zone; pattern E--small multifocal lesions varying from hyper--to hypointense, interpreted as necrosis and haemorrhage; pattern F--periventricular centrifugal hypointense stripes in the centrum semiovale and deep white matter of the frontal and occipital lobes. Contrast was effectively inverted on T1-weighted images. Patterns A, B and C were found in 17%, 25% and 37% of patients, and patterns D, E and F in 19%, 17% and 35%, respectively. In 49 patients a combination of patterns was observed, but 30% of the initial images were normal. At follow-up, persistent abnormalities were seen in all children with patterns A and D, but in only 52% of those with pattern C. Myelination was retarded most often in patients with diffuse brain injury and PVL (patterns A and D).
Resumo:
Performance & Development Solutions (PDS) publishes a variety of newsletters that include some great information about our programs and services. Some of the topics you may find include: Upcoming Seminars Current events or news related to training Recognition of achievements How-to section
Resumo:
Performance & Development Solutions (PDS) publishes a variety of newsletters that include some great information about our programs and services. Some of the topics you may find include: Upcoming Seminars Current events or news related to training Recognition of achievements How-to section
Resumo:
Performance & Development Solutions (PDS) publishes a variety of newsletters that include some great information about our programs and services. Some of the topics you may find include: Upcoming Seminars Current events or news related to training Recognition of achievements How-to section
Resumo:
Performance & Development Solutions (PDS) publishes a variety of newsletters that include some great information about our programs and services. Some of the topics you may find include: Upcoming Seminars Current events or news related to training Recognition of achievements How-to section
Resumo:
Performance & Development Solutions (PDS) publishes a variety of newsletters that include some great information about our programs and services. Some of the topics you may find include: Upcoming Seminars Current events or news related to training Recognition of achievements How-to section
Resumo:
Performance & Development Solutions (PDS) publishes a variety of newsletters that include some great information about our programs and services. Some of the topics you may find include: Upcoming Seminars Current events or news related to training Recognition of achievements How-to section
Resumo:
Performance & Development Solutions (PDS) publishes a variety of newsletters that include some great information about our programs and services. Some of the topics you may find include: Upcoming Seminars Current events or news related to training Recognition of achievements How-to section