1 resultado para Computer Vision and Pattern Recognition
em CaltechTHESIS
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (16)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (10)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (48)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (43)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (48)
- Brock University, Canada (8)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (16)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (69)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (25)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (56)
- Dalarna University College Electronic Archive (13)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (3)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (10)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (27)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- Galway Mayo Institute of Technology, Ireland (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Instituto Politécnico do Porto, Portugal (11)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (9)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (10)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (15)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (12)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (17)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (71)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (10)
- Scielo Uruguai (2)
- Universidad de Alicante (15)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (26)
- Universidade do Minho (10)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universita di Parma (1)
- Universitat de Girona, Spain (39)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (62)
- Université de Montréal, Canada (14)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (20)
- University of Queensland eSpace - Australia (40)
- University of Southampton, United Kingdom (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Visual inputs to artificial and biological visual systems are often quantized: cameras accumulate photons from the visual world, and the brain receives action potentials from visual sensory neurons. Collecting more information quanta leads to a longer acquisition time and better performance. In many visual tasks, collecting a small number of quanta is sufficient to solve the task well. The ability to determine the right number of quanta is pivotal in situations where visual information is costly to obtain, such as photon-starved or time-critical environments. In these situations, conventional vision systems that always collect a fixed and large amount of information are infeasible. I develop a framework that judiciously determines the number of information quanta to observe based on the cost of observation and the requirement for accuracy. The framework implements the optimal speed versus accuracy tradeoff when two assumptions are met, namely that the task is fully specified probabilistically and constant over time. I also extend the framework to address scenarios that violate the assumptions. I deploy the framework to three recognition tasks: visual search (where both assumptions are satisfied), scotopic visual recognition (where the model is not specified), and visual discrimination with unknown stimulus onset (where the model is dynamic over time). Scotopic classification experiments suggest that the framework leads to dramatic improvement in photon-efficiency compared to conventional computer vision algorithms. Human psychophysics experiments confirmed that the framework provides a parsimonious and versatile explanation for human behavior under time pressure in both static and dynamic environments.