951 resultados para Amorphous Oxide Thin Film Transistors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different fluoride materials are used as gate dielectrics to fabricate copper phthalocyanine (CuPc) thin film. transistors (OTFTs). The fabricated devices exhibit good electrical characteristics and the mobility is found to be dependent on the gate voltage from 10(-3) to 10(-1) cm(2) V(-1)s(-1). The observed noticeable electron injection at the drain electrode is of great significance in achieving ambipolar OTFTs. The same method for formation of organic semiconductors and gate dielectric films greatly simplifies the fabrication process. This provides a convenient way to produce high-performance OTFTs on a large scale and should be useful for integration in organic displays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pentacene thin-film transistors have been obtained using polymethyl-methacrylate-co-glyciclyl-methacrylate (PNIMA-GMA) as the gate dielectric. The optimum active layer thickness in thin-film transistors (OTFTs) was investigated. The present devices show a wide operation voltage range. The on/off current ratio is as high as 10(5). In linear region (V-DS = -2V), the field-effect mobility of device increases with the increase in gate field at low-voltage region (V-G < - 20 V), and a mobility of 0.33 cm(2)/Vs can be obtained when V-G > 20 V. In saturation region, the mobility increases linearly with the gate field, and a high mobility of 1.14 cm(2)/Vs can be obtained at V-G = -95V. The influence of voltage on mobility of device was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyamide- 6(PA 6)/polytetrafluoroethylene is studied as a potential gate dielectric for flexible organic thin film transistors. The same method used for the formation of organic semiconductor and gate dielectric films greatly simplifies the fabrication process of devices. The fabricated transistors show good electrical characteristics. Ambipolar behaviour is observed even when the device is operated in air.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bottom-contact organic thin-film transistors (BC OTFTs) based on inorganic/organic double gate insulators were demonstrated. The double gate insulators consisted of tantalum pentoxide (Ta2O5) with high dielectric constant (kappa) as the first gate insulator and octadecyltrichlorosilane (OTS) with low kappa as the second gate insulator. The devices have carrier mobilities larger than 10(-2) cm(2)/V s, on/off current ratio greater than 10(5), and the threshold voltage of -14 V, which is threefold larger field-effect mobility and an order of magnitude larger on/off current ratio than the OTFTs with a Ta2O5 gate insulator. The leakage current was decreased from 2.4x10(-6) to 7.4x10(-8) A due to the introduction of the OTS second dielectric layer. The results demonstrated that using inorganic/organic double insulator as the gate dielectric layer is an effective method to fabricate OTFTs with improved electric characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic thin-film transistors (OTFTs) having source/drain electrodes sandwiched between copper phthalocyanine (CuPc) and cobalt phthalocyanine (CoPc) layers, CuPc/CoPc SC OTFTs, are investigated. Comparing their properties with that of CuPc-based top-contact OTFT, field-effect mobility increases from 0.04 to 0.11 cm(2)/Vs, threshold voltage shifts from -13.8 to -8.9 V, and the current on/off ratio maintains at a level of 10(5). A top-contact OTFT with a layer of CuPc and a layer of CoPc (10%)-CuPc mixture reveals that the combination of CuPc and CoPc enhances charge injection from the source electrode into the active layer and increases the off-state current. The sandwich configuration increases the field-effect mobility, reduce the threshold voltage, and improve the on/off ratio at the same time. Our results indicate that using a double-layer of active organic materials in sandwich configuration is an effective way to improve OTFT performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The device performances of copper phthalocyanine (CuPc)-based organic thin-film transistors (OTFTs) in main components of air were studied. We found that the device stored in O-2 humidified by water exhibited the changes of electric characteristics including positive-shifted threshold voltage and lower I-on/I-off but unchanged mobility, which was similar to the device exposed to room air. These changes are attributed to O-2 doping to copper phthalocyanine thin film assisted by water. Furthermore, a cross-linked polyvinyl alcohol film was used as encapsulation layer to prevent the permeation of O-2 and water, which resulted in excellent stability even when devices were placed in air for over a year. Therefore, current studies will push the development of OTFTs for practical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the fabrication of organic thin-film transistors (OTFTs) with copper phthalocyanine (CuPc) as the semiconductor and calcium fluoride (CaF2) as the gate dielectric on the glass substrate. The fabricated transistors show a gate voltage dependent carrier field effect mobility that ranges from 0.001 to 0.5 cm(2) V-1 s(-1). In the devices, the CaF2 dielectric is formed by thermal evaporation; thus OTFTs with a top-gate structure can be fabricated. This provides a convenient way to produce high-performance OTFTs on a large scale and should be useful for the integration of organic displays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compact blue conducting mixed-valence Mo (VI,V) oxide film was grown on the surface of a carbon fibre (CF) microelectrode by cycling the potential between +0.20 and similar to 0.70 V SCE in freshly prepared Na2MoO4 solution in H2SO4 (pH 2). The thicknes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field effect transistors (FETs) based on organic materials were investigated as sensors for detecting 2,4,6-trinitrotoluene (TNT) vapors. Several FET devices were fabricated using two types of semiconducting organic materials, solution processed polymers deposited by spin coating and, oligomers (or small molecules) deposited by vacuum sublimation. When vapors of nitroaromatic compounds bind to thin films of organic materials which form the transistor channel, the conductivity of the thin film increases and changes the transistor electrical characteristic. The use of the amplifying properties of the transistor represents a major advantage over conventional techniques based on simple changes of resistance in polymers frequently used in electronic noses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the theoretical and experimental results for oxide thin film growth on titanium films previously deposited over glass substrate. Ti films of thickness 0.1 μm were heated by Nd:YAG laser pulses in air. The oxide tracks were created by moving the samples with a constant speed of 2 mm/s, under the laser action. The micro-topographic analysis of the tracks was performed by a microprofiler. The results taken along a straight line perpendicular to the track axis revealed a Gaussian profile that closely matches the laser's spatial mode profile, indicating the effectiveness of the surface temperature gradient on the film's growth process. The sample's micro-Raman spectra showed two strong bands at 447 and 612 cm -1 associated with the TiO 2 structure. This is a strong indication that thermo-oxidation reactions took place at the Ti film surface that reached an estimated temperature of 1160 K just due to the action of the first pulse. The results obtained from the numerical integration of the analytical equation which describes the oxidation rate (Wagner equation) are in agreement with the experimental data for film thickness in the high laser intensity region. This shows the partial accuracy of the one-dimensional model adopted for describing the film growth rate. © 2001 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic electronics has grown enormously during the last decades driven by the encouraging results and the potentiality of these materials for allowing innovative applications, such as flexible-large-area displays, low-cost printable circuits, plastic solar cells and lab-on-a-chip devices. Moreover, their possible field of applications reaches from medicine, biotechnology, process control and environmental monitoring to defense and security requirements. However, a large number of questions regarding the mechanism of device operation remain unanswered. Along the most significant is the charge carrier transport in organic semiconductors, which is not yet well understood. Other example is the correlation between the morphology and the electrical response. Even if it is recognized that growth mode plays a crucial role into the performance of devices, it has not been exhaustively investigated. The main goal of this thesis was the finding of a correlation between growth modes, electrical properties and morphology in organic thin-film transistors (OTFTs). In order to study the thickness dependence of electrical performance in organic ultra-thin-film transistors, we have designed and developed a home-built experimental setup for performing real-time electrical monitoring and post-growth in situ electrical characterization techniques. We have grown pentacene TFTs under high vacuum conditions, varying systematically the deposition rate at a fixed room temperature. The drain source current IDS and the gate source current IGS were monitored in real-time; while a complete post-growth in situ electrical characterization was carried out. At the end, an ex situ morphological investigation was performed by using the atomic force microscope (AFM). In this work, we present the correlation for pentacene TFTs between growth conditions, Debye length and morphology (through the correlation length parameter). We have demonstrated that there is a layered charge carriers distribution, which is strongly dependent of the growth mode (i.e. rate deposition for a fixed temperature), leading to a variation of the conduction channel from 2 to 7 monolayers (MLs). We conciliate earlier reported results that were apparently contradictory. Our results made evident the necessity of reconsidering the concept of Debye length in a layered low-dimensional device. Additionally, we introduce by the first time a breakthrough technique. This technique makes evident the percolation of the first MLs on pentacene TFTs by monitoring the IGS in real-time, correlating morphological phenomena with the device electrical response. The present thesis is organized in the following five chapters. Chapter 1 makes an introduction to the organic electronics, illustrating the operation principle of TFTs. Chapter 2 presents the organic growth from theoretical and experimental points of view. The second part of this chapter presents the electrical characterization of OTFTs and the typical performance of pentacene devices is shown. In addition, we introduce a correcting technique for the reconstruction of measurements hampered by leakage current. In chapter 3, we describe in details the design and operation of our innovative home-built experimental setup for performing real-time and in situ electrical measurements. Some preliminary results and the breakthrough technique for correlating morphological and electrical changes are presented. Chapter 4 meets the most important results obtained in real-time and in situ conditions, which correlate growth conditions, electrical properties and morphology of pentacene TFTs. In chapter 5 we describe applicative experiments where the electrical performance of pentacene TFTs has been investigated in ambient conditions, in contact to water or aqueous solutions and, finally, in the detection of DNA concentration as label-free sensor, within the biosensing framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field effect transistors (FETs) based on organic materials were investigated as sensors for detecting 2,4,6-trinitrotoluene (TNT) vapors. Several FET devices were fabricated using two types of semiconducting organic materials, solution processed polymers deposited by spin coating and, oligomers (or small molecules) deposited by vacuum sublimation. When vapors of nitroaromatic compounds bind to thin films of organic materials which form the transistor channel, the conductivity of the thin film increases and changes the transistor electrical characteristic. The use of the amplifying properties of the transistor represents a major advantage over conventional techniques based on simple changes of resistance in polymers frequently used in electronic noses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor physics has developed significantly in the field of re- search and industry in the past few decades due to it’s numerous practical applications. One of the relevant fields of current interest in material science is the fundamental aspects and applications of semi- conducting transparent thin films. Transparent conductors show the properties of transparency and conductivity simultaneously. As far as the band structure is concerned, the combination of the these two properties in the same material is contradictory. Generally a trans- parent material is an insulator having completely filled valence and empty conduction bands. Metallic conductivity come out when the Fermi level lies within a band with a large density of states to provide high carrier concentration. Effective transparent conductors must nec- essarily represent a compromise between a better transmission within the visible spectral range and a controlled but useful electrical con- ductivity [1–6]. Generally oxides like In2O3, SnO2, ZnO, CdO etc, show such a combination. These materials without any doping are insulators with optical band gap of about 3 eV. To become a trans- parent conductor, these materials must be degenerately doped to lift the Fermi level up into the conduction band. Degenerate doping pro- vides high mobility of extra carriers and low optical absorption. The increase in conductivity involves an increase in either carrier concen- tration or mobility. Increase in carrier concentration will enhance the absorption in the visible region while increase in mobility has no re- verse effect on optical properties. Therefore the focus of research for new transparent conducting oxide (TCO) materials is on developing materials with higher carrier mobilities.