956 resultados para sapphire substrate
Resumo:
High quality GaN is grown on GaN substrate with stripe pattern by metalorganic chemical vapor deposition by means of epitaxial lateral overgrowth. AFM,wet chemical etching, and TEM experiments show that with a two-step ELOG procedure, the propagation of defects under the mask is blocked, and the coherently grown GaN above the window also experiences a drastic reduction in defect density. In addition, a grain boundary is formed at the coalescence boundary of neighboring growth fronts. The extremely low density of threading dislocations within wing regions makes ELOG GaN a potential template for the fabrication of nitride-based lasers with improved performance.
Resumo:
Wurtzite single crystal GaN films have been grown onto a gamma-Al2O3/Si(001) substrate in a horizontal-type low pressure MOVPE system. A thin gamma-Al2O3 layer is an intermediate layer for the growth of single crystal GaN on Si although it is only an oriented polycrystal film as shown by reflection high electron diffraction. Moreover, the oxide is not yet converted to a fully single crystal film, even at the stage of high temperature for the GaN layer as studied by transmission electron microscopy. Double crystal x-ray linewidth of (0002) peak of the 1.3 mu m sample is 54 arcmin and the films have heavy mosaic structures. A near band edge peaking at 3.4 eV at room temperature is observed by photoluminescence spectroscopy. Raman scattering does not detect any cubic phase coexistence.
Resumo:
In this paper, we present results of the synthesis of gold nanoclusters in sapphire, using Ar ion implantation and annealing in air. Unlike the conventional method of Au implantation followed by thermal annealing, Au was deposited on the surface of m- and a- cut sapphire single crystal samples including those pre-implanted with Ar ions. Au atoms were brought into the substrate by subsequent implantation of Ar ions to form Au nanoparticles. Samples were finally annealed stepwisely in air at temperatures ranging from 400 to 800 C and then studied using UV–vis absorption spectrometry, transmission electron microscopy and Rutherford backscattered spectrometry. Evidence of the formation Au nanoparticles...
Resumo:
This paper describes the creation of a germanium on sapphire platform, via wafer bonding technology, for system-on-a-chip applications. Similar thermal coefficients of expansion between germanium (5.8 x 10-6 K-1) and sapphire (5 x 10-6 K-1) make the bonding of germanium to sapphire a reality. Germanium directly bonded to sapphire results in microvoid generation during post bond annealing. Inclusion of an interface layer such as silicon dioxide layer by plasma enhanced chemical vapour deposition, prior to bonding, results in a microvoid free bond interface after annealing. Grinding and polishing of the subsequent germanium layer has been achieved leaving a thick germanium on sapphire (GeOS) substrate. Submicron GeOS layers have also been achieved with hydrogen/helium co-implantation and layer transfer. Circular geometry transistors exhibiting a field effect mobility of 890 cm2/V s have been fabricated onto the thick germanium on sapphire layer.
Resumo:
Silicon-on-sapphire (SOS) substrates have been proven to offer significant advantages in the integration of passive and active devices in RF circuits. Germanium on insulator technology is a candidate for future higher performance circuits. Thus the advantages of employing a low loss dielectric substrate other than a silicon-dioxide layer on silicon will be even greater. This paper covers the production of germanium on sapphire (GeOS) substrates by wafer bonding. The quality of the germanium back interface is studied and a tungsten self-aligned gate process MOST process has been developed. High low field mobilities of 450-500 cm2/V-s have been achieved for p-channel MOSTs produced on GeOS substrates. Thick germanium on alumina (GOAL) substrates have also been produced.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
EPR study of both blue and green sapphire samples confirms the presence of Cr(III) in four different octahedral sites. The g (1.98) value is the same but D values differ for the two the samples. The EPR spectra suggest that the blue sapphire contains more chromium than the green sapphire. No Fe(III) impurity was noted in the EPR spectrum.
Resumo:
Microorganisms play key roles in biogeochemical cycling by facilitating the release of nutrients from organic compounds. In doing so, microbial communities use different organic substrates that yield different amounts of energy for maintenance and growth of the community. Carbon utilization efficiency (CUE) is a measure of the efficiency with which substrate carbon is metabolized versus mineralized by the microbial biomass. In the face of global change, we wanted to know how temperature affected the efficiency by which the soil microbial community utilized an added labile substrate, and to determine the effect of labile soil carbon depletion (through increasing duration of incubation) on the community's ability to respond to an added substrate. Cellobiose was added to soil samples as a model compound at several times over the course of a long-term incubation experiment to measure the amount of carbon assimilated or lost as CO2 respiration. Results indicated that in all cases, the time required for the microbial community to take up the added substrate increased as incubation time prior to substrate addition increased. However, the CUE was not affected by incubation time. Increased temperature generally decreased CUE, thus the microbial community was more efficient at 15 degrees C than at 25 degrees C. These results indicate that at warmer temperatures microbial communities may release more CO2 per unit of assimilated carbon. Current climate-carbon models have a fixed CUE to predict how much CO2 will be released as soil organic matter is decomposed. Based on our findings, this assumption may be incorrect due to variation of CUE with changing temperature. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The way in which metabolic fuels are utilised can alter the expression of behaviour in the interests of regulating energy balance and fuel availability. This is consistent with the notion that the regulation of appetite is a psychobiological process, in which physiological mediators act as drivers of behaviour. The glycogenostatic theory suggests that glycogen availability is central in eliciting negative feedback signals to restore energy homeostasis. Due to its limited storage capacity, carbohydrate availability is tightly regulated and its restoration is a high metabolic priority following depletion. It has been proposed that such depletion may act as a biological cue to stimulate compensatory energy intake in an effort to restore availability. Due to the increased energy demand, aerobic exercise may act as a biological cue to trigger compensatory eating as a result of perturbations to muscle and liver glycogen stores. However, studies manipulating glycogen availability over short-term periods (1-3 days) using exercise, diet or both have often produced equivocal findings. There is limited but growing evidence to suggest that carbohydrate balance is involved in the short-term regulation of food intake, with a negative carbohydrate balance having been shown to predict greater ad libitum feeding. Furthermore, a negative carbohydrate balance has been shown to be predictive of weight gain. However, further research is needed to support these findings as the current research in this area is limited. In addition, the specific neural or hormonal signal through which carbohydrate availability could regulate energy intake is at present unknown. Identification of this signal or pathway is imperative if a casual relationship is to be established. Without this, the possibility remains that the associations found between carbohydrate balance and food intake are incidental.
Resumo:
Two archaeal Holliday junction resolving enzymes, Holliday junction cleavage (Hjc) and Holliday junction endonuclease (Hje), have been characterized. Both are members of a nuclease superfamily that includes the type II restriction enzymes, although their DNA cleaving activity is highly specific for four-way junction structure and not nucleic acid sequence. Despite 28% sequence identity, Hje and Hjc cleave junctions with distinct cutting patterns—they cut different strands of a four-way junction, at different distances from the junction centre. We report the high-resolution crystal structure of Hje from Sulfolobus solfataricus. The structure provides a basis to explain the differences in substrate specificity of Hje and Hjc, which result from changes in dimer organization, and suggests a viral origin for the Hje gene. Structural and biochemical data support the modelling of an Hje:DNA junction complex, highlighting a flexible loop that interacts intimately with the junction centre. A highly conserved serine residue on this loop is shown to be essential for the enzyme's activity, suggesting a novel variation of the nuclease active site. The loop may act as a conformational switch, ensuring that the active site is completed only on binding a four-way junction, thus explaining the exquisite specificity of these enzymes.